IBM Software Grt@ti;éf e

Systems Engineering Best Practices with the Rational
Solution for Systems and Software Engineering

Deskbook Release 4.1

Model-Based Systems Engineering with Rational Rhapsody and
Rational Harmony for Systems Engineering

Hans-Peter Hoffmann, Ph.D.
Chief Systems Methodologist

hoffmape@us.ibm.com

ﬁ "©2011 IBM Corporation
iy

¥

The file "Deskbook Rel 4.0.pdf" is the latest version of the “Systems Engineering Best Practices with the Rational Solution for Systems and Software
Engineering Deskbook Release 4.0” (“Deskbook”), released July 2013.

The Deskbook is written for the practitioner. Screenshots, notes and best practice tips are added to the workflow descriptions. The brief introductions
are minimal rather than narrative. The Deskbook is not intended to replace IBM Rational Rhapsody training; it is intended to supplement it. It is
assumed that the reader is familiar with UML/SysML and the IBM Rational Rhapsody tool.

Permission to use, copy, and distribute, this Deskbook, is granted; provided, however, that the use, copy, and distribution of the Deskbook is made in
whole and not in part.

THIS DESKBOOK IS PROVIDED "AS IS." IBM MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

IBM WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE
DESKBOOK OR THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS OF THE DESKBOOK.

The directory "Deskbook Rel.4.0 Requirements and Models" contains the requirements specification for the Security System example and
snapshots of the models generated with Rhapsody.

Copyright IBM Corporation 2006, 2011
IBM Corporation

Software Group

Route 100

Somers, NY 10589

US.A.

Licensed Materials - Property of IBM Corporation
U.S. Government Users Restricted Rights: Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

IBM, the IBM logo, Rational, the Rational logo, Telelogic, the Telelogic logo and other IBM products and services are trademarks of the International
Business Machines Corporation, in the United States, other countries or both.

Other company, product, or service names may be trademarks or service marks of others.
The Rational Software home page on the Internet can be found at ibm.com/software/rational

The IBM home page on the Internet can be found at ibm.com

Foreword

VISUALI ZATion
MoDEL
w/ Toot

MODEL-DrIVER
DEVELOPMENT
| MUST BE ASSHCIATED
10 DELIVERAGLC /

PRAGMATC

WORK FLow

(S ALL THAT

' 15 NEEDED /
FROBLEM 15 THE

LRSTRACTION OF SV
NEEDS - DIFFICULT TO
ARTICULATE /

The Author - by J. Rick White

Foreword to the Deskbook Release 4.1

Here it is — the next iteration. Two chapters were added to the
Appendix, extending the scope of the previous release. It now
addresses the model-based system design approach in case of a
change request to a legacy system and a model-based testing
approach for the verification of hand-off models by means of the
Rhapsody tool add-ons TestConductor (TC) and Automatic Test
Generation (ATG).

The testing chapter is a contribution of Dr. Udo Brockmeyer (BTC
Embedded Systems AG, Germany) and his team. Thank you all.

Boston , February 2014

Foreword to the Deskbook Release 4.0

The systems engineering process is iterative. There is no reason why
this should not be applicable also to the Deskbook.

This release outlines a new approach — the Use Case Realization
Approach. Experiences in several complex applications show that this
approach significantly streamlines the development of an Integrated
System Architecture. Also, the collaboration between the tools
Rhapsody and DOORS via the Rhapsody Gateway tool is addressed
in more detail.

Since | first introduced the Deskbook over seven years ago, the
Deskbook has been used by customers all over the world. Besides
the English release there is also a Japanese and a Chinese translation
available. | want to thank Chiori Asada and her team in Japan for their
effort translating the Release 3.1 into Japanese. For China, Lian Gu
personally translated the Release 4.0 into Chinese. This release will
be available in China as an IBM booklet July 2013. 1| also want to
express my appreciation to Lian for her translation.

| also want to thank two colleagues who deserve special mention with
regard to their contributions to this release: Andy Lapping and Pavel
Vodov. Andy — the “Wizard Guru” — is the author of the Rhapsody SE-
Toolkit. Pavel detailed the collaboration between the tools Rhapsody
and DOORS. Working with them has been a distinct pleasure for me.

Any feedback for the next iteration (release) is appreciated.
Boston, June 20, 2013

© Copyright IBM Corporation 2006. 2010. All Rights Reserved.

Table of Contents

Table of Contents

T |10 0 LU L 020 1 1 1
L S To7 0 OO TP UP PO PP PRI 1
1.2 DOCUMENT OVERVIEW.....ccuttiitite ittt ettt eatttasseteseteeaateeeateeeaa bt e ess e e as st a4 b et e 1a b e e o be e e s et e 4aE et e 1as e e ee st e 4o R et o 4a R et 4 b et e s et e 4R et e Aa b et ea bt e e s et e ea b e e e ne e e abn e e sabe e e nareeenne s 1

2 FUNDAMENTALS OF HARMONY FOR SYSTEMS ENGINEERINGcuiiiininiiicinisassssss s s s sssassss sassss st s ssssa s ms s ssss s sssns snsms snssnssnsnnsas 2
2.1 RATIONAL INTEGRATED SYSTEMS / EMBEDDED SOFTWARE DEVELOPMENT PROCESS HARMONYc.uttiiiiiieiiiiiiiie sttt e seree st e sane e esree e snne e 2
2.2 MODEL-BASED SYSTEMS ENGINEERING PROCESSceitttiteteiteaaatetaauetaaateeeaeeaaaseeaaseeaamseeaaseeaasseeaaseeeamseeaaseeaanseeaseeaseeaanseesseeeamseeanseeaanseesaseeesnseesns 4

221 Lo U=t =T o (R Y F= 1Y T OO SO PRTP 5
2.2.2 SyStem FUNCHONEAI ANAIYSIScooiiiiiiiiiiii ettt e oottt e e oo bttt e o4k bttt o4 b bttt e 4 s b e et e o s bt e e e ea b e et e e aabb et e e sabbe e e e s nbe e e e santneee s 6
223 DESIGN SYNTNESIS ...ttt oottt e o bbbt e 4 a ettt e o R b et e oo AR b e e 44 ea R b et e £ ea R b et e oAb e et e e AR b et e e e R be e e e e n e e e e e nbe e e e e aanes 10
2.2.31 ATCNIEECIUIAI ANGIYSIS ...ttt ettt e ottt oo e b et e o e b et e oo a s bt e 4o ea s b et e oo s b et e e ab bt e e e e ab bt e e e eanbe e e e eanbe e e e enres 10
2232 Fa (el T C=Tea U= L L= oo U PRSP PPP 13
2.2.4 Systems ENGINEEING HaNA-Off...... ..ottt e e e e e ettt e e e e e s et e teeeeaeeeesasstasaeeeaeeseaasssssaeeaeesaaasssteseeaaeeesaansssaneeaeeanan 17
2.3 ESSENTIAL SYSML ARTIFACTS OF MODEL-BASED SYSTEMS ENGINEERINGuetiiutteititeiuteeateeeststesseeesaseesneesteeeasbeesseeaabeeesabe e e saseesabeeaaneeesneennees 18
2.3.1 e (U1 =T aa =T gL S I T=To [=1 SRR SPP 19
B S 1 (g0 (o (0 LY BT To | =10 T PRSPPI 19
2.3.21 (=1 oTod QB T=] {Ta) o) g I D =T [=T o o [PRSPPI 19
2.3.2.2 [a1CT g T Tl =T [oTod I =T | = o SO PUPRRN 19
23.2.3 = T a1 (AT D= To =T o I P PRSP 21
233 T o E= YT g DI E= o =T o o 1 S OO PRP 21
2.3.31 O o 0= LTl =T = o o O P PP PSP 22
2332 Yo (113 VA B I E= T [= o o EO O PP POTPPP 22
2.3.3.3 Lo To [0 =T et B T To =T o O PP PP PUP PP PPPPRPN 23
2.3.34 Y e= 1 (=Ted o F= Ty DT E=To = o o KO PRSP 23
2.3.4 Artifact Relationships at the Requirements Analysis / System Functional Analysis LeVEL.............c.c.uveiiiiiiiiiiiiiiiee e 24
2.4 SERVICE REQUEST-DRIVEN MODELING APPROACHceiiutteiuttteiutteateeaattte sttt e saseesateeaateeaaaseesaseees et e 1a b et e 1a et e ea et e e s et e ea b et e be e e b et e aa b et e abeeesabeeabeeesaneeennneas 25

3 RHAPSODY PROUJECT STRUCTURE ...ttt st sssssasss s sms st ss £ eas s £ rae s £ e £S5 ad £ £ R RS £ A £ S £ R e £ A AR £ R AR £ A AR RE S AR ARE R ERREER AR SRR e R nmnnnann s 26
3.1 PROUJECT STRUCTURE OVERVIEW ...ccuutteiutetiteteiutetassseesuteeasetesaseeaseeaaseeeas bt e aass e e aaseesas et e 1a bt e £ate e e s et e o8 et e b et e ee et e 1a b et e 1a bt e oot et e b et e na b et e nab e e sabe e et e e e anreenneean 26
3.2 REQUIREMENTS ANALYSIS PACKAGEcuttiittteiuteteittteaitee sttt e stee et e e ate e e aa bt e e se e e aas e e o b et e 1a b et e be e £ s et 42 b et e oa et e eh et e 4o b et e 1a bt e oot e e e b et e s b et e na b e e eabe e e aneeennneenaree s 27
3.3 FUNCTIONAL ANALYSIS PACKAGEuteeiiitaitete et aaueeeaeeeaateeeaateeaaseeaseeeamseeaaaeeeamseeamseeeamseeaseeeamseeamseeaaneeeamseesmseeeamteeenseeeanseeamseeeamseeanseeanseeeanseeanneenn 28
3.4 DESIGN SYNTHESIS PACKAGEueeiiiiieeititaatiteatee e e iee e eeeaateeeaateeaseeaaseeeamteeaaaseeaaseeamseeeamseeaaaeeeamseesmseeeameeeamseeamseeeamteeeseeeamseeanseeeamseeanseeanseeeanseeenneenn 29

3.4.1 Architectural ANAIYSIS PACKAGEc..eeiiiiiiiiii ettt ettt e o bttt oo b bttt oo bttt e oo st et e e e b b et e e ea bbbt e e s bba e e e snbneeesnneeee s 29
3.4.2 Architectural DESIGN PaCKAGEooiiiiiiiiiiii ittt bttt oo a bt oo a b b et e oo b et 4o e s b et e e a b et e e e b b e e e e e b b et e e e nbe e e e e ares 30
3.5 SYSTEM-LEVEL DEFINITIONSeeititeittaaitetaateteateeaaueeeaeeeaaseeeauseeaseeaseeeamseeaaaseeamseeaseeeamseeaaseeeameeeamseeaamseeamseeamseeeamseeaseeeanseeaseeeamseeanneeaseeeanseeanseenn 31

4 CASE STUDY: SECURITY SYSTEMcoiiiiiiiiimiiiniisniiississsisss e ssss s s s st s s s s s £ £ a e £ 8 e £ £ e e £ A e AR £ R AR R £ R RR RS E AR e AR AR ER AR R AR RE e R e R R e RannenRans 32

4.1 CASE STUDY WORKFLOW.......eeiuttteiutteateeaatetesteteasstesateeaaseeaasseeaaseeabe e e 1ase e e 1h st e ea s et a8 et e 1o b e £ £ es st e eh e e e 4o b e e e 4s R e e oas et e b et 41 E et e ea st e ean e e e b et e s bt e eabeeebeeesane e e nareenanes 32

4.2 CREATION OF A HARMONY PROJECT STRUCTURE

Harmony for SE Deskbook | ii © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Table of Contents

4.3 REQUIREMENTS ANALY SIS .. itiuttttteittttaeiaueteeeaauueeeesaneseeasassseeeasseeaeaansseeesansseeesansseeesanseeeesansseeeaanseeeesanseeeesanseeeeeansteeeeansbeeeeannteeeeaasteeeeansteeesannseeeeannnes 34
4.3.1 DOORS: Import of Stakeholder REQUIFEIMENTSuiiiiiiiiiiiiiieeii et e e e e e e e et e e eeeeeeesa st sseeeeaeeeesasassaaeeeaeeaasasstaneeaaeeesannssneees 35
4.3.2 DOORS: IMport of SYStEM REQUITEIMENTS.......ccciiiiiiiiie ettt e et e et e e e e e e e e et e eeeees et e teeetaeeeesaabasaeeeaeeesaaasssaeeeeeesaasssbaneeeaeeesannsnreees 36
4.3.3 Linking System Requirements to Stakeholder REQUINEMENTSoii i e e e e 38
4.3.4 DOORS -> Gateway -> Rhapsody: Import of System ReqUIrEMENTSooiiiiiiiiii e e e 41
4.3.5 DefiNition Of SYSTEM-LEVEI USE CASESooiiiiiiiii ittt e h et e e e h et e oo aa bt e e e o oa b et e e o aa b et e e e aa b et e e e e abe e e e aabbe e e e e nbe e e e anbeeeeennes 42

4.3.5.1 LinKiNg REQUIFEMENTS 10 USE CASESciiiiiiiiiiiiiiie ettt h e oo a bt e e e oa bt e e e oa b et e e e o b et e e e o b e e e e e ebbe e e e aabe e e e e anbeeeesaabeeeenns 43
4.3.6 Rhapsody -> Gateway -> DOORS: EXPOIt Of USE CaSEScciiuuiiiiiiiiiii ittt ettt e e b e e e sb bt e e e ab bt e e e sabe e e e e aabeeeeeaas 46

4.4 SYSTEM FUNCTIONAL ANALYSIS. ..ceeiuuuteeeiiureeeeiasseeeesassseeesasssesesasssesssasssessaassssessasssesesasssesesasssesessassssesanssssesanssssesanssesesanssssesansssssssassesessssseeessnssesessnnses 48

441 L Tl L @70 a1 o] 1 =1 o1 iV P EPURSP 49
4411 DLyl aT1 T Ao 1Y (oY [B 0o g1 (=Y ¢ SRR 49
441.2 DY Ty To T o]l ¥ e 1T o F= 1IN o USRS 52
4413 Derivation Of BIaCk-BOX USE CaSE SCENAIOSceiuuiiieiiuiiieeeiiite e e atteeeeateeee e staeeeesateeeeaaabeeeeaasteeaeeanteeaeaanbeeaeeanteeeesanseeeeaasteeeeannseeeeannees 53
4414 Definition Of POIS @nd INTEITACEScoiiiiiii ettt et e e e ettt e e e e a et e e e ettt e e e anbeeeeeanbeeeeenbeeeeeanteeeeenreeeeenees 57
4415 Definition Of USE CaS@ BERNAVIOToooiiiiiii ettt et e e ettt e e e ettt e e e amte e e e e em bt e e e e anbeeeeeanbeeeeanbeeeeeanteeeeennreeeeenees 58
4416 WL N 0= L 1Y Lo To L= MY A=y Tor= 1 (o] o SRR 60
4417 Linking Model Properties to0 REQUIFEMENTESoooi i et e oo ettt et e e e e e e e et e et e e ee e e e e e neeeeeeeeeeeaansneneeeaaeeeaaannnnnes 62

442 L T2 @70 1o | =51 PR 64
4421 D12 T 1 o] a1 o V(0o [I 0o) 1= AP 64
4422 Definition of FUNCHONAI FIOWttt oo oo oottt e e oo e oot e et eeeae e e e e aneeeeeaaeeesanssseeeeeeeaa e nnseneeeeeeesaaannsnnneeaaens 64
4423 Derivation of Black-BoX USE Cas@ SCENAIOSouuuieiiiiiei it e e et e e e e e e e e oot e eeaae e e e e eeeeeeeaaeaeaaneaseeeeaaeeeaaannneeeaeeeaaannnnnneaeaens 65
4424 Definition Of POIS @nd INTEITACESooiiiiie ettt e e e ettt e e e st e e e et et e e e ambeeeeeanbeeeeeanbeeeeeanbeeeeenteeeeenees 66
4425 Definition Of USE CaSE BERNAVIOTooi ittt ettt e e ettt e e e e ettt e e e sabe e e e e an bt e e e e anbeeeeeanteeeeanbeeeeeanteeeeenteeeeenees 66
4426 0N 0= LTI Y oo [IV A=Yy i o= o) o USRS 67
4427 Linking Model Properties t0 REQUIFEIMENTSooiiiiiiiiiiiiiie ettt e e e e e s e e e e e e e s e st b aaeeeaaeeseaaabsseeeeaeeeanssataneeaaeessanrsraees 67

S T B =] T NI N N 1T =] SRR 68

4.5.1 Architectural Analysis (Trade-Off ANGIYSIS).......cuuiuiiiiiiiii it et e e oot e e e s b e e e e e s bt e e e e s bt e e e e abe e e s anbbe e e e aasbe e e s anbeeeeennes 68
4511 Definition of Key SYSIEM FUNCLONS ...ttt e e e a et e e et e e e e e a b et e e e bb e e e e e nbe e e s anbeeeeenees 69
4512 D121 aT1 i o] a o A @F= T o To F= L (=IRS o 6] 1T] oI PP 70
4513 Definition Of ASSESSMENT CrItEIIaoeii i e ettt e e oottt e e e e e et eteteeeeeeeaa e eneeeeeaaeaeaannnseeeeeaeaaannseneeeaaeeaaaannnnneeaaaens 71
4514 Assigning Weights t0 ASSESSIMENT CrILEIIAoiiiiiiiii et a bt e e e e b e e e e e b e e e e e b ee e e s bt e e e s anbe e e e enees 72
451.5 Definition of a Utility CUrve fOr @acCh CritEIIONuiii et e e b e e e bt e e e e bbe e e s eabe e e e e nees 73
451.6 Assigning Measures of Effectiveness (MOE) t0 €aCh SOIULION..............uiiiiiiii i e e e e e e e e e 74
451.7 Doy Y gaa T a b= iTe] g I e S To] (01T o TSRS 75
451.8 Documentation of the Solution in the ArchiteCturalDESIGNPKG.......c.oiiiiiiiiiiiie e e e e e e e e e e e e e e e e eanreaeeaaee s 77

I A N ot a1 (=To 18] =TI LT o | o PRSPPI 78
4521 Use Case Realization UCTCONIIOIENTIYuuiiiii ittt e e et e e e e e e e e et e e e eeaeeesa st ateeeeaaeessansasaeeeeaeessaanseseeeaesssaannrenneaaanns 79

4.5.2.1.1 Update of the ArchiteCturalDESIGNPKGuuiiiiiii i e e e e e et eeee e e e e st e aeeeeeeeeesaasbaaaeeeaeeeeasnsbaseeaaeeesannsnrenes 79
4.5.2.1.2 Allocation of System BIOCK Properies 10 PartSooiiiiiiiiiiiii ettt ettt et e e ba e e e snnee s 80
4.521.21 Allocation Of Operations t0 Partsoooi ittt e e e oo ettt eeeae e e e e e aneeeeeeaaeeaaannneeeeeaeeeaannnneeeeaaeeeaanns 80
4.5.2.1.2.2 Allocation of Attributes and EVENS 10 Partsottt e an e e e e e e e e e anns 84
4.5.2.1.3 Derivation of White-BoX SEqUENCE DIAGIamIS.......coiuuiiiiiiiiiii ittt ettt e o bt e e e b e et e e s aab e et e s aabe et e s aabee e e abneeeesnneeeas 85
4.5.2.1.4 Definition of Ports @nd INTEITACESoooi i ettt e e oo e ettt e e e e e e e te e eeeeaee e e e e nsseeeeeeeeaaannnseeeeaaeeeaaannnnnees 88

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | iii

Table of Contents

4.5.2.1.5 Definition of Realized USE Case BERNAVIOc.uuiiiiiiiiii ettt ettt e e ettt e e e sttt e e e sttt e e e sbeeeeeabaeeeeaabeeeesanbeeeeeanteeeeeane 90
4.52.1.6 Realized Use Case VErfICAtION.........ooiiiiiiiiiiiiie ittt ettt e ettt e e e ettt e e e st be e e e e sateeeeeaabeeeeesabeeeeeaabeeeeeaseeeeeanbaeeeeanbeeeesansenaaeanes 93
4.5.2.1.7 Allocation of Non-functional REQUITEMENTSuiiiiiiie it e e e e e e e st e e e e e e e e e sea b et eeeeaeesesaasaeeeaaeeeseannreaeeeas 93
4522 Use Case Realization UC2CONTIOIEXILoo ittt e e oo oottt e e e e e e oo ee e eeeeeae e e s e neneeeeeaaeeeaannsneeeeeeeaaannnseneeaaeeeaaanne 94
4.5.2.2.1 Update of the ArchiteCtUralDESIGNPKGcooiiiiii ettt e bt e e e o bt e e e o b et e e e s b b e e e e abbe e e e anbeeeeeanbeeeeeaan 94
4.5.2.2.2 Allocation of System BIOCK Properies 10 PartSottt e e e e e bt e e e et e e e s aabeeee e e 94
4.5.2.2.3 Derivation of White-BoX SeqUENCE DIAGIamIS.ciiiiiiiiiiiiiiee ittt e e e aa bt e e e sttt e e e rb et e e e abee e e s abeeeeesabeeeeeanbeeeeeaae 94
4.5.2.2.4 Definition of Ports @nd INterfaCes ... ettt e e oottt te e e e e e e et et et eeaeee s e e neeeeeeeaaea e e nnnnneeeeeaeaaaannrneeeean 95
4.5.2.2.5 Definition of Realized Use Case BERaAVION ... ittt e e ettt te e e e e e e e s et te e e e e e e e e e s nneeeeaeaeaaanneneeeeas 95
4.52.2.6 Realized Use Case VErfICAtION.........coiiiiiiiiiiiiie ettt ettt e ettt e e sttt e e e st teeeeeaateeeeeaabeeeeeaabeeeeeaabeeeeeaseeeeeanbaeaesanseeeesanseeaeeanes 96
4.5.2.2.7 Allocation of Non-functional REQUITEMENTSuiiiiiiiii it e et e e e e e e s e e e e e e e e e sea b e reeeeaeessssasaeeeeaeeesaannrenneeas 96
4523 Integrated Use Case REANZALIONoooiiiiiiiii et e e et e e e e e e s et et et e e e e e sa st ataeeeaeeesaanssaeeeaesesasssstanneaaeeesaannes 97
4.5.2.3.1 Creation Of BASE IA IMOELooo ittt ettt e e ettt e e ettt e e e sateeeeeamteeeeeambeeeeeaabeeeeeaabeeeeeaseeeeeantaeeeeanteeeeeanseneaeane 98
4.5.2.3.2 Configuring Realized Use Case Model HAaNAORToooiiiiiiiiiiee ettt e e e e e e e e e e e e e e e e ae e e e e e senannrnaeeeas 99
4.5.2.3.3 Integration 0f REAIZEA USE CaSEc.c.uuiiiiiiiii ittt e e e et e e e e e e e e et e et e eeeesa st s aaeeeaeeeesansasaeeeaaeeesastaaeeeaaessaasnrsnneens 100
4.5.2.3.4 Verification of Use Cases CollabOration........ ... ittt ettt e e e e e e et et e e e e e e e e e eeeeeeeaaeeeaaaneeeeeaaeeaaanneeneeeas 108

5 HAND-OFF TO SUBSYSTEM DEVELOPMENT ...t iiir s sssse s e mn s sms e s same s s s ame s s e e s e me e s e me e £ e s me e e e s mn e s s same e e s nnnennsnnnnnan 109
T N o o | 115
A1 IMIODELING GUIDELINESceetuttieeeitteeeesteeeessteeeesssseaaeaseeaesastaeaesassseaesansaeaeasasaeaesansaeeeeansseeeasteeeeaasseeeeaastaeeeeanseeeeeanseeeeeanseeeeansseeeeansseeeeassaneeenses 115
A1.1 General Guidelines and Drawing CONVENTIONScoiiiiiiiiiiiiiee ettt ettt e aa b e e e et et e e e ot et e e e o b et e e e abee e e e abaeeeesabeeeeeanbeeeesanbeeeeeaan 115
A1.2 U R = LT =T [=0 o PP OPPPP 116
A1.3 (21 oTed 1 D= {1 a 1 i e =T | = o [PPSR 117
Al4 Ta1C=Ta aE= T = To ot 1= [= o I PRSPPI 118
A1.5 F A1 1 =T = o TS PRSPPI 120
A1.6 S TeTo (UL o Lot T 1= o | = o P SPPRPRR 123
A1.7 Y F=Y (Yol b= T D IT= To | = o o PP PPRPPRN 125
A1.8 e 0) 1o SR 127
A2 DERIVING A STATECHART DIAGRAMutiiiiiitiiite ittt e settteeesaseaeeeaassseesassseeesassseeeaassseeeaassseeeaansseeesansseeeansseeeaassseeeaansseeeaansseeeeasseeeeasseneesanseeesansses 128
A3 USAGE OF ACTIVITY DIAGRAM INFORMATION IN THE SE WORKFLOWuuutiieiitiiiteiiitetesasteeesasseresasseessassseessasseeesassesessnssesesssssesssssssssesssssesesanssees 133
A6 RHAPSODY ACTION LANGUAGEcettiituttteietteetetatteetesaseeeesasaeesasseeesaassseeeaassseseaassseeeaassseeasansseeasassseeeaansseeesansseeeeansseeesansseeeeasseeeesasseeesnssenesnnsses 136
A5 CHANGE REQUEST-DRIVEN SYSTEM DESIGN APPROACHcciuitietititeetiteteesietteeesasteaesaaseeasaasseeasaastasassassesassassesesssssssesssnssessssssesessassesesanssesessnssens 139
A6 USING MODEL-BASED TESTING FOR THE VERIFICATION OF HAND-OFF IMODELS.........uutteiittiteiitietesssteeesssteeesassseessssseeesasseeesssssesesssssesesssssenessnnsees 147
A7 RHAPSODY SE-TOOLKIT (OVERVIEW)eetttitttteeitetteesautteeesauseeeesasseeeasssseaeassseeeaasseeeeaassseeasansseeesansseeesansseeesansseeeaansseeesansteeesaanseeeeannseeeesansenesanssees 153
A 3 =1 o =1 41110 156

Harmony for SE Deskbook | iv © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Introduction

1 Introduction

1.1 Scope

Meanwhile, many books and articles have been published about
SysML, the standardized language for model-based systems
engineering [1]. But in most cases, the question of how to apply it in
an integrated systems and software development process has not
been addressed. This deskbook tries to close the gap. Based on the
Rational® Integrated Systems/Embedded Software Development
Process Harmonym it provides systems engineers with a step-by step
guide on using the SysML in a way that allows a seamless transition to
the subsequent system development.

In this deskbook the chosen tools are the Rational® systems and
software design tool Rhapsody® Release 8.01 and the requirements
management and traceability tool DOORS® Release 9.3.

The deskbook is written for the practitioner. Screenshots, notes, and
best practice tips are added to the workflow descriptions. The brief
introductions are minimal rather than narrative.

The deskbook does not replace the Rhapsody training documentation.
It rather is intended to supplement it. It is assumed, that the reader is
familiar with the UML/SysML and the Rhapsody tool.

1.2 Document Overview

The deskbook is divided into 5 sections:
e Section 1 describes the scope and structure of this book.

e Section 2 introduces the basic concepts of Harmony for Systems
Engineering. It starts with an overview of how the systems
engineering part of the integrated systems/embedded software
development process Harmony fits into the model-driven
development lifecycle. Then, the task flow and the associated work
products in the different systems engineering phases are detailed.
With regard to modeling, this section also provides an overview of
SysML artifacts that are considered essential for model-based
systems engineering, followed by an introduction to the service
request driven modeling approach.

e Section 3 describes the project structure that should be followed
when the Rhapsody tool is used in a model-based systems
engineering project.

e Section 4 details a case study of the Harmony for Systems
Engineering workflow using the Rhapsody tool. The chosen
example is a Security System. The workflow starts with the import
of stakeholder requirements into DOORS and ends with the
definition of an executable integrated system architecture model.
The workflow is application oriented and focuses on the usage of
the Rhapsody SE-Toolkit.

e Section 5 addresses the handoff to the subsequent subsystem
(SecSysController) development.

Also provided are several appendices (Section 6) including

e a chapter about modeling/style guidelines regarding the usage of
the various SysML diagrams in model-based systems engineering

e a guideline how to derive a statechart diagram from the information
captured in an activity diagram and associated sequence diagrams.

e a chapter about the usage of Activity Diagram information in the SE
workflow,

e a quick reference guide to the Rhapsody Action Language,

e an overview of the Rhapsody SE-Toolkit features

e a chapter outlining the model-based system design approach in the
case of a change request to a legacy system

e a chapter about a model-based testing approach for the verification
of hand-off models by means of the Rhapsody tool add-ons
TestConcuctor (TC) and Automatic Test Generation (ATG).

Included to this deskbook is a volume containing

o the SecSys Stakeholder and System Requirements

o for each of the SE phases the incrementally extended Rhapsody
model database.

e DOORS archive of the SecSys requirements

o Rhapsody Gateway custom types file

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Harmony for SE Deskbook |1

Fundamentals of Harmony for Systems Engineering

2 Fundamentals of Harmony for Systems Engineering

2.1 Rational Integrated Systems / Embedded Software Development Process Harmony

Fig. 2-1 shows the Rational Integrated Systems / Embedded Software
Development Process Harmony by means of the classic “V” diagram.
The left leg of the “V” describes the top-down design flow, while the
right hand side shows the bottom-up integration phases from unit test
to the final system acceptance. Using the notation of statecharts, the
impact of a change request on the workflow is visualized by the “high-
level interrupt”. Whenever a change request occurs, the process will
restart at the requirements analysis phase.

The Harmony process consists of two closely coupled sub-processes

- Harmony for Systems Engineering and
- Harmony for Embedded Real Time Development

The systems engineering workflow is iterative with incremental cycles
through the phases requirements analysis, system functional analysis
and design synthesis. The increments are use case based.

Architectural Analysis Model(s),
System Architecture Model

System .
Architecture =~
Baseline

Software
Implementation
Model

Change Request
AN ™
Stakeholder Harmony™ for
Requirements Systems
{ / Engineering System
) Validation
Requirements Models, Requirements ScelRRESRE onOrs) > Plan System
System Use Cases Model Analysis Acceptance
Test
Executable SO UE] SESNarios
Use Case Model(s) Analysis
System
Verification

Design Synthesis P

Analysis & Design s

Plan (Sub-)System

Integration & Test

ication

Harmony™ for
Procedure \\ y

Embedded RT
Development
Integration & Test

<“— Model /| Requirements Repository

SW Implementation

& Unit Test

Fig. 2-1 Rational Integrated Systems / Embedded Software Development Process Harmony

Harmony for SE Deskbook |2

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Fundamentals of Harmony for Systems Engineering

The software engineering workflow is characterized by the iterative
incremental cycles through the software analysis and design phase,
the implementation phase, and the different levels of integration and
testing [3].

The analysis iterations for systems engineering and implementation
continue through implementation and testing, to provide demonstrable
results with each iteration to continually validate behavior.

It is important to note the creation and reuse of requirements related
test scenarios all along the top-down design path. These scenarios
are also used to assist the bottom-up integration and test phases and,
in the case of system changes, regression test cycles.

The Harmony process supports Model-Driven Development (MDD). In
a model-driven development, the model is the central work product of
the development processes, encompassing both analysis and design.
Each development phase is supported by a specific type of model.

Models that support the requirements analysis phase are

- the Requirement Models and
- the System Use Cases Model.

A requirement model visualizes the taxonomy of requirements. The
system use cases model groups requirements into system use cases.
Neither of these models is executable.

In the system functional analysis phase the focus is on the translation
of the functional requirements into a coherent description of system
functions (operations). Each use case is translated into an executable
model and the underlying system requirements verified through mode/
execution.

There are two types of executable models supporting the design
synthesis phase:

- Architectural Analysis Model(s) and
- System Architecture Model

The objective of the architectural analysis model(s) - also referred to
as Trade Study Model(s) - is to elaborate an architectural concept for

the implementation of the identified operations e.g. through a
parametric analysis.

The system architecture model captures the allocation of the system
operations to the system architecture that was elaborated in the
previous architectural analysis phase. The correctness and
completeness of the system architecture model is verified through
model execution. Once the model is verified, the architectural design
may be analyzed with regard to performance and safety requirements.
The analysis may include Failure Modes Effects Analysis (FMEA), and
Mission Criticality Analysis.

The baselined system architecture model defines the hand-off to the
subsequent HW/SW development.

Model-driven software development is supported by the Software
Implementation Model. This model is the basis for - either manual or
automatic - code generation.

An essential element of the model-driven development process is the
Model/Requirements Repository. It contains the configuration
controlled knowledge of the system under development, i.e.

Requirements documentation
Requirements traceability
Design documentation and
Test definitions

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Harmony for SE Deskbook |3

Fundamentals of Harmony for Systems Engineering

2.2 Model-based Systems Engineering Process

Key objectives of Harmony for Systems Engineering are:

¢ |dentification and derivation of required system functions
o |dentification of associated system modes and states
e Allocation of the identified system functions and modes/states to a

subsystem structure

With regard to modeling, these objectives imply a top-down approach

on a high level of abstraction.

The main emphasis is on the

identification and allocation of a needed functionality and state-based
behavior, rather than on the details of its functional behavior.

Fig. 2-2 depicts an overview of Harmony for Systems Engineering.
For each of the systems engineering phases, it shows the essential
input and outputs.

The following paragraphs detail the workflow and artifacts of the
model-based systems engineering process and outline an associated
Requirements Management and Traceability (RT) concept. For a
more application oriented workflow description, please refer to the
case study in Section 4.

Model / Requirements Repository

Stakeholder Requirements

, Stakeholder Requirements

Next Iteration

A A

| System Requirements

Requirements Analysis

i System Use Case(s)

System Use Case(s)

Updated System Requirements

Executable Use Case Model(s)

System Functional Analysis

A A A A

UC Activity Diagram(s) (Black-Box)

(Use Case-Based)
SRS

' UC Scenarios (Black-Box)

i Non-Functional System Requirements

(Baseline)
System Operations

Design Synthesis

"1 Updated System Requirements

<

Architectural Analysis

K | Architectural Analysis Model(s)

E UC Activity Diagram(s) (Black-Box)

(Trade Study)

Architectural Concept

Architectural Design

A

! Realized Use Case Model(s)

o UC Realization

! Scenarios (White-Box)

A A

o Integrated UC Realization

i Integrated System Architecture Model

Links providing traceability
to original requirements

N,

: Logical ICDs
HW/SW Req Specs

incl. Test Scenarios

HW/SW
Development

Fig. 2-2 Model-based Systems Engineering

Harmony for SE Deskbook | 4

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Fundamentals of Harmony for Systems Engineering

2.2.1 Requirements Analysis

The objective of the requirements analysis phase is to analyze the
process inputs. Stakeholder requirements are translated into system
requirements that define what the system must do (functional
requirements) and how well it must perform (quality of service
requirements)

The essential steps of the requirements analysis workflow are shown
in Fig. 2-3. It starts with the analysis and optional refinement of the
stakeholder requirements. Output of this phase is the Stakeholder
Requirements Specification.

Stakeholder [System Use Cases defined]

Requirements
m [else]

Analyze/Refine
Stakeholder Reqs

N Stakeholder
Requirements
s Specification

| !

Generate GinK
System Reds Stakeholder Reqs
Y a to System Reqs

l

N System
Requirements
Specification (Draft)

Define
System Use Case

Y

Link
Functional / Performance
Regs to System Use Case

[Next Use Case]
[else]

[Prioritize and Group

——
System Use Cases]

y
®

Fig. 2-3 Workflow in the Requirements Analysis Phase

Essentially, stakeholder requirements focus on required capabilities. In
the next step, these are transformed into required system functions
(“shall” statements) and documented in the Draft System
Requirements Specification. For traceability, the identified system
requirements are linked to the associated stakeholder requirements.

The next major step in the requirements analysis phase is the
definition of system use cases. A use case describes a specific
operational aspect of the system (operational thread). It specifies the
behavior as perceived by the actors (user) and the message flow
between the actors and the use case. An actor may be a person,
another system or a piece of hardware external to the system under
development (SuD). A use case does not reveal or imply the system’s
internal structure (black box view).

Use cases may be structured hierarchically — but care should be taken
not to functionally decompose the use cases. Use cases are not
functions, they use functions. There is no “golden rule” with regard to
the number of use cases needed to describe a system. Experience
shows that for large systems, typically 10 to 15 system use cases may
be defined at the top level. At the lowest level a use case should be
described by at least 5, with a maximum of 25 essential use case
scenarios. At this stage, emphasis is put on the identification of
“sunny day” use cases, assuming an error/fail free system behavior.
Exception scenarios will be identified at a later stage (=> system
functional analysis) through model execution. If more than 5 error/fail
scenarios are found for a use case, they should be grouped in a
separate exception use case, which are then linked to the “sunny day”
use case via an include or extend dependency.

In order to assure that all functional and associated performance
requirements are covered by the use cases, respective traceability
links need to be established.

Once the system-level use cases are defined and the complete
coverage of the functional and associated performance requirements
is assured, they need to be ranked according to their importance for
the definition of the system architecture. The selected set of use
cases defines the increments of the iterative SE workflow. At the end
of each iteration this ranking might need to be updated.

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Harmony for SE Deskbook |5

Fundamentals of Harmony for Systems Engineering

2.2.2 System Functional Analysis

Fig. 2-4 details the modeling tasks and the associated work products.
First, the use case model context is defined in an Internal Block
Diagram. Elements of this diagram are instances of SysML blocks,
representing the use case and its associated actor(s). At this stage,
the blocks are empty and not linked.

The main emphasis of the system functional analysis phase is on the
transformation of the functional system requirements into a coherent
description of system functions (operations). The analysis is use
case-based, i.e. each system-level use case that was identified in the
previous requirements analysis phase is translated into an executable
model. The model and the underlying requirements then are verified
through model execution.

Build Executable Model of Use Case

[Define Use Case Model Context }

(UC Internal Block Diagram)

[Alternative 3]

Alt tive 1
[Alternative 1] YAlternative 2]
v \4

Define UC Scenarios Define UC Functional Flow Define UC State-Based Behavior
(UC Black-Box Sequence Diagrams) (UC Black-Box Actlwty Diagram) (UC Statechart Diagram)
Derive UC Functional Flow Derive UC Scenarios
from UC Scenarios from UC Functional Flow from UC Statechart Diagram
(UC Black-Box Activity Diagram) (UC Black-Box Sequence Diagrams) (UC Black-Box Sequence Diagrams)

v

(UC Internal Block Diagram)
v

L

Define Ports And Interfaces
(UC Internal Block Diagram)

1

Derive UC State Based Behavior
from UC Black-Box AD and SDs
(uc Statechart Diagram)

Document
New / Derived Reqgs

[Derive UC Scenarios]
|—'[Define Ports And Interfaces }

Verify UC Model
through Model Execution

}—

* [Rainy Day Analysis]
Extend UC Model
w.r.t. Error/Fail Behavior

DYy

[else]

v

Link
UC Block Properties to Reqgs

v

Update
Draft System Req Spec

Fig. 2-4 Alternative Approaches of Building an Executable Use Case Model

Harmony for SE Deskbook | 6 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Fundamentals of Harmony for Systems Engineering

The next step in the modeling workflow is the definition of the behavior
of the use case block. It is captured by means of three SysML
diagrams:

- Activity Diagram,
- Sequence Diagrams, and
- Statechart Diagram.

Each diagram plays a specific role in the elaboration of the use case
behavior. The activity diagram — referred to as Use Case Black-Box
Activity Diagram - describes the overall functional flow (storyboard) of
the use case. It groups functional requirements in actions — in
Harmony for Systems Engineering the equivalent of operations - and
shows, how these actions/operations are linked to each other. The
sequence diagram — referred to as Use Case Black-Box Sequence
Diagram - describes a specific path through the use case and defines
the interactions (messages) between the operations and the actors.
The statechart diagram aggregates the information from the activity
diagram (functional flow) and the sequence diagrams (actor
interactions). It puts this information into the context of system states
and adds to it the system behavior due to external stimuli of different
priority.

There is no mandate directing in which order these diagrams should
be generated. The order may depend on the available information and
the modeler’s preference. Fig. 2-4 shows three alternative
approaches:

Alternative 1 starts with the definition of use case scenarios.
Customers often describe sequences of required system usage (e.g.
Concept of Operations). Once a set of essential scenarios is
captured, the identified functional flow is merged into a common
description in an activity diagram. Ports and interfaces are created
from the sequence diagrams (ref. Section 2.4 Service Request-Driven
Modeling Approach). They define the links between the actor(s) and
the use case block in the use case model internal block diagram. The
final step in this approach is the definition of the state-based behavior
of the use case block in a statechart diagram.

Alternative 2 starts with the definition of the use case functional
flow. This is a common approach, if systems engineers have to
elaborate requirements. Typically, customers like to express their
requirements from the “big picture” point of view. Once the overall
functional flow is defined, use case scenarios are derived from the

activity diagram (ref. Fig. 2-5). Ports and interfaces of the use case
block are created from the sequence diagrams. Lastly, its state-based
behavior is captured in a statechart diagram.

Alternative 3 starts with the definition of the use case state-based
behavior. This approach is recommended if the system under design
(SuD) is strongly state-based. In this case, the creation of a use case
black-box activity diagram may even be skipped. Use case scenarios
then are derived as paths through the statechart diagram. From the
sequence diagram then ports and associated interfaces are
generated.

It should be noted, that regardless of which approach is chosen, the
most important diagram in the system functional analysis process is
the use case block statechart diagram. It comprises the information of
both the black-box sequence diagrams and the use case black-box
activity diagram and can be verified through model execution. The
use case black-box activity diagram and the associated black-box
sequence diagrams will be reused further down in the design process.

Whenever during the use case based system functional analysis new
requirements are identified or high-level requirements are detailed by
derived requirements, they need to be documented. Last at the end of
the system functional analysis phase, these additional requirements
need to be approved by the stakeholders and exported to the
requirements traceability tool.

The use case model is analyzed through model execution using the
black-box use case scenarios as the basis for respective stimuli. It
should be noted, that - following the previously outlined key objectives
of this process - the primary focus is on the verification of the
generated sequences rather than on the validation of the underlying
functionality.

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Harmony for SE Deskbook |7

Fundamentals of Harmony for Systems Engineering

AD_Uc_HomingAndManualMode J

Start

[elsd [elsg]
f [Axis == "AxisC"] [Axis == "AxisB"]
o
User L User
[1] [1]
setSpeed setSpeed
[Userlnput == DirectionA] [Userinput == DirectionB] [Userinput == DirectionA] [Used nput == DirectionB]
(s
[elsq

[inSafePog

mvCtridAxisAToOpenPos

[checkStatusAxisC

[elsg]

v
Start

[elsg] [Axis == "AxisM"]

[Axis == "AxisD"]
setDirection

User

[1l

mvCmddAxisE_Normal

B

MdJ

mvCmdd/AxisL_Normal
mvCmddAxisL_Slow

-

SD_Uc_HomingAndManualMode_Sc1)

User Uc_HomingAndManualMode

Preconditions:
System is powered

setOpMode("Manual")

qSetAxis("AxisA")
setAxis("AxisA")

reqSetDirection(Direction)

!

setDirection(Direction)

reqSetSpeed(Speed)
setSpeed(Speed)

checkPosAxisB()

AxisB in Save Position

checkStatusAxisA()

1

alt [AxisA Homed]

mvCmddAxisA_Normal()

e

[else]

mvCmddAxisA_Slow()

AR A A TR RN

B

Fig. 2-5 Derivation of a Use Case Scenario from a Use Case Black-Box Activity Diagram (Industrial Automation Use Case)

Harmony for SE Deskbook |8

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Fundamentals of Harmony for Systems Engineering

Extend UC Model w.r.t. Error/Fail Behavior

f Identify
'L Exception Behavior
Extend
UC Block Statechart Diagram
[Update
UC Functional Flow] Update
UC Black-Box Activity Diagram
[else] |
[Update
UC Model I1BD] Update
UC Model Internal Block Diagram
[else] |
A 4
Verify UC Model Record
trough Model Execution Exception Scenario(s)

[Next Exception] ¢
[else]

®

Fig. 2-6 Workflow of the Use Case Model Rainy Day Analysis

Once the use case model and the underlying functional requirements
are verified, Rainy Day Analysis may be performed. This analysis
focuses on the identification of system error / fail behavior that was not
covered by the initial set of requirements.

Fig. 2-6 details the workflow and the associated work products of the
rainy day analysis. It is recommended to first add respective
exception behavior to the statechart diagram as this diagram depicts
best the overall system behavior. If the error / fail behavior includes
new functionality, the use case black-box activity diagram and - if
needed — the use case fail behaviour scenario as well as the internal
block diagram needs to be updated accordingly. The extended use
case model is verified through model execution.

The use case modeling workflow ends with the definition of traceability
links between the use case block properties and relevant system
requirements. If new requirements or derived requirements were
identified during the modeling process, the draft system requirements
specification needs to be updated accordingly.

Once all use cases of an iteration increment are verified, the system
functional analysis phase ends with the baselined System
Requirements Specification. Another document generated at this
stage is the System-Level Interface Control Document (ICD). It
defines the logical (=functional) interfaces between the (black-box)
system and its actors and is the aggregate of all use case blocks
interfaces. This ICD is the basis for the later system-level (black-box)
test definition.

Sometimes the question comes up whether a black-box functional
system model — incl. an integrated black-box statechart diagram -
should be built in order to assure, that the system has been completely
described by the use cases. In principal, there is no reason why it
should not be done. The more pragmatic and time saving approach is
to shift this issue to the subsequent design synthesis phase. The use
cases should have brought enough system information to start the
architectural design. What is missing will be identified later when the
system architecture model will be verified through model execution.

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Harmony for SE Deskbook |9

Fundamentals of Harmony for Systems Engineering

2.2.3 Design Synthesis

The focus of the Design Synthesis phase is on the development of a
physical architecture (i.e. a set of product, system, and/or software
elements) capable of performing the required functions within the limits
of the prescribed performance constraints.

Design Synthesis is split into two sub-phases

- Architectural Analysis and
- Architectural Design.

2.2.3.1 Architectural Analysis

System functional analysis defines What the system should do but not
How it is to be done. The objective of a Trade Study in the
architectural analysis phase is to determine the best means of
achieving the capability of a particular function in a rational manner.
i.e. to identify the How.

One of the simplest means of determining the “how” is a technique
known as the Weighted Objectives Method, developed by N. Cross [4].
This form of analysis is commonly used within the field of Engineering
System Design to evaluate potential solutions to functional problems.
It can also be used to determine the best hardware platforms for
software or decide the optimum mechanical/electrical hardware split
based upon non-functional requirements like a set of customer
constraints, performance or cost criteria.

Fig. 2-7 depicts the workflow and the associated work products in the
Architectural Analysis phase.

Identify Key System Functions

The objective of this task is to group system functions into sub-sets to
support the analysis of alternatives during architectural analysis. A
key system function could be a group of system functions that

are cohesive and/or tightly coupled or

may be realized by a single architectural component or

will be realized by reuse of an existing component (HW/SW) or
may be reused within the system or

address a specific design constraint

!

Define
Key System Functions

Build Weighted Objectives Table

!

Define
Candldate Solutions

Defme
Assessment Criteria

for each Criterion

A55|gn MoEs
to Candldate Solutions

ASS|gn
Weights to Criteria

J
)
)
)
)

Determine Solution

[Next Key System Function]
[else]

Merge Solutions to
Form System Architecture

N Trade Study
Report

Fig. 2-7 Workflow and Work Product in the Architectural Analysis Phase

The next 6 tasks are performed for each selected key system function.

Define Candidate Solutions

There is always more than one way to realize a key system function.
The objective of this task is to identify possible solutions for a
previously identified key system function. The solutions are
elaborated in a team representing all relevant areas of expertise. At

Harmony for SE Deskbook | 10

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Fundamentals of Harmony for Systems Engineering

this stage, associated stakeholder requirements need to be identified
and taken into consideration. Candidate solutions may take into
consideration previously developed hardware and software
components, non-developmental items, and COTS hardware and
software.

Identify Assessment Criteria

In order to identify the best solution from a set of candidate solutions
for a specific key system function, assessment criteria need to be
identified. Meaningful assessment criteria are established in
collaboration with stakeholders and a team representing all relevant
areas of expertise. Typically, the assessment criteria are based upon
customer constraints, required performance characteristics, and/or
costs.

Assign Weights to Assessment Criteria

Not all assessment criteria are equal. Some are more important than
others. Assessment criteria are weighted according to their relative
importance to the overall solution. The weighting factors are
normalized to add up to 1.0. This task should be performed in
collaboration with stakeholders and relevant domain experts.

Define Utility Curves for each Criterion

The purpose of this task is to define a set of normalization curves -
also known as Utility Curves or Value Functions - one for each
assessment criterion that will be used to produce a dimensionless
Measure of Effectiveness for each solution candidate. This curve
yields a normalized value typically between 0 and 10. The input value
to the curve is typically based upon equipment specifications or
derived from calculations based upon possible solutions. In this case
it is considered as being objective.

A utility curve may also be created by knowledgeable project
members. In this case the curve reflects the consensus among the
group but should be considered as subjective.

Assign Measures of Effectiveness (MoE) to Candidate Solution

In order to compare the different solutions of a key system function via
weighted objectives analysis each candidate solution is characterized
by a set of normalized, dimensionless values - Measures of
Effectiveness (MoE) - which describe how effective a solution
candidate is for a particular assessment criterion... The MoE is a
normalized value computed using the utility curve and the nominal
value specified for the solution candidate. The nominal values are

typically determined from equipment specifications or derived from
calculations based upon the relevant solution.

Determine Solution

The determination of a preferred solution is performed by means of
Weighted Objectives calculation. In this analysis the MoE values for
each of the assessment criteria are multiplied by the appropriate
weight. The weighted values for each alternative solution then are
added to obtain a total score for each solution. The solution with the
highest score is selected as the implementation for that particular
function.

Fig. 2-9 shows for the key system function “Capture Biometric Data” in
the case study described later in chapter 4, that the preferred solution
is the Fingerprint Scanner.

Step Function ~ Continuous
Relationship
1
T
1
1

/

-
|
|
-

(MoE) ,

6
Utility = —] ~— —
[l
|
|

2

0
Threshold Goal
Assessment Criterion
(e.g. Speed, Cost, Reliability, etc)

Fig. 2-8 Different Shapes of Utility Curves

Merge Possible Solutions to form System Architecture

The solutions identified for each key system function are merged to
define the equipment breakdown structure. It is assumed that the
initial key system functions were independent. Thus, the final merged
solution is the preferred solution based upon the assessment criteria
for the complete architecture. It will be the basis of the subsequent
architectural design activities. These design decisions are captured in
the Trade Study Report along with any resulting design constraints.

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Harmony for SE Deskbook | 11

Fundamentals of Harmony for Systems Engineering

10
]
8____________ >
6
MoE
Pl

I
4 !
2 //!/ !

1
/ Optical Scanner Fingerprint Scanner
| | | | |

0 ‘ | ‘ I |
400 350 300 250 200 150 100 50 0

Purchase Cost ($)

Purchase Cost Utility Curve used in the Trade Study

Solution Criteria

Accuracy Purchase Cost Installation Cost Maintenance Security Weighted
Solution Alternatives Cost Tgtal
Wt=0.3 Wt=0.2 Wt=0.15 Wt=10.1 Wit=0.25
Fingerprint Scanner 7.5 2.25 7.25 1.45 6.0 0.9 8.0 0.8 8.0 2.0 7.4 y
Optical Scanner 10.0 3.0 3.75 0.75 212 0.318 6.0 0.6 10.0 2.5 7.168
MoE = Measurement of Effectiveness Value W =Weighted Value = Wt = MoE Weighted Total = > W(Solution Alternative)

Fig. 2-9 Weighted Objectives Table of the Key System Function “Capture Biometric Data” (ref. Case Study Chapter 4)

Harmony for SE Deskbook | 12 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Fundamentals of Harmony for Systems Engineering

2.2.3.2 Architectural Design

!

Elaborate Architectural Concept
(Trade Study)

()
T

Use Case Realization L

!

The focus of the architectural design phase is on the allocation of
functional requirements and non-functional requirements to an
architectural structure. This structure may be the result of a previous
trade study or a given (legacy) architecture. The allocation is an
iterative process and is typically performed in collaboration with
domain experts.

Architectural
Analysis

Architectural design is performed incrementally for each use case of
an iteration by transitioning from the black-box view to the white-box

view — also referred to as use case realization (ref. Fig. 2-10). The Define Parts of I
taskflow is quite similar to the one outlined for the System Functional Becomponaon Hisrachy
Analysis ¥

Allocate System-Level
Operations to Parts

v

Derive
White-Box Sequence Diagrams

¥
Define
Ports and Interfaces

v

|
|
)
|

It starts with the definition of the system architectural structure. Based
on the chosen design concept the use case block is decomposed into
its relevant system architecture parts. The resulting structure is
captured in a SysML Block Definition Diagram (BDD) and Internal
Block Diagram (IBD).

G T e

Next, the system-level use case operations are allocated to the system
structure. Generally, there are two ways to proceed. If an allocation
concept exixts, they may be copied directly into the relevant parts.
Otherwise, the allocation can be elaborate graphically by means of the
Use Case White-Box Activity Diagram. Essentially, this activity
diagram is a copy of the Use Case Black-Box Activity Diagram,
partitioned into swim lanes, each representing a block of the system
architectural decomposition hierarchy. Based on the chosen design
concept, the system-level operations (= actions) then are “moved” into
respective block swim lanes (ref. Fig. 2-12) An essential requirement
for this allocation is that the initial links (functional flow) between the
actions are maintained.

Leaf Blocks State Based Behavior

f pep—

Verify Reallzed UC Model
through Model Execution

=
=
)
@
(=]
o
S
=
7}
@
=
=
o
<

e

Alloeato & Link
Neon-Functional Requirements

& i

v v
.

[Merge Realized UC Models into the]

Integrated System Architecture Model

Use case white-box activity diagrams may be nested, thus reflecting T
the iterative architectural decompositions of the system under design Verify Collaboration
(ref. Fig. 2-11). [through Model Execution }

é

Fig. 2-10 Workflow in the Architectural Desigm Phase

If an action cannot be allocated to a single block, it must be
decomposed. In this case, the sub-operations need to be linked to the
parent operation through a respective dependency.

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook |13

Fundamentals of Harmony for Systems Engineering

SuD Lvl0

SuD Sub vl 7
SuD Lvl2 /
UC Black-Boc Activity Dagram | | | e
SS1 S§S2
1 1
UC White Box Activity Diagram Lvl 1 ss1 SS2
ss11 $812 $S13 1 st
. 1
UC White-Box *
Activity Diagram Lvl 2 . ﬂ

Fig. 2-11 Nested Use Case White-Box Activity Diagram

An action/operation may also be allocated to more than one block, e.g.
(architectural redundancy) in order to meet fault tolerance
requirements. In this case, the relevant operation/action is copied into
the respective block swim lane and integrated into the functional flow.

The white-box activity diagram provides an initial estimate of the
resulting load on respective communication channels, as links that
cross a swim lane correspond to interfaces.

Dependent on the hand-off to the subsequent development, the
subsystem block(s) - and associated white-box activity diagram may
need to be further decomposed. At the lowest level, the functional
allocation may address which operation should be implemented in
hardware and which should be implemented in software.

From the final Use Case White-Box Diagram, associated White-Box
Sequence Diagrams are derived (ref. Fig. 2-13). As outlined
previously, these sequence diagrams are the basis from which ports
and interfaces of the blocks at the lowest level of the system
architecture are derived.

Once system-level operations are allocated to the relevant blocks at
the lowest level of the architectural decomposition and associated
ports and interfaces are defined, the individual state-based behavior is
captured in a statechart diagram. The leaf-block behavior as well as
the collaboration of the decomposed subsystems then is verified
through model execution.

The last step in the use case realization task flow is the allocation of
non-functional requirements to the relevant part(s) and/or operations
(e.g. time budgeting). Respective <<satisfy>> links need to be
established.

The final task in the architectural design phase is the creation/update
of the Integrated System Architecture Model. This model is the
aggregate of the realized use case models. It is the aggregate of the
baselined realized use case models

The use cases collaboration as well as the correctness and
completeness of the Integrated System Architecture Model may be
verified through model execution.

Harmony for SE Deskbook | 14

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Fundamentals of Harmony for Systems Engineering

AD_Uc_HomingAndManuaiMode J

[l == "AisB] mvCtridAsL ToBascPos.

MVCtIdAXSAToOpenPos

mCtridAxisL ToBasePos.

(LA

felse] [Adis == "AxisM"]

s
m

Wt = e |
kil
(===}

Use Case Black-Box Activity Diagram

Fig. 2-12 Allocation of Operations to Subsystems (Use Case Fig. 2-5)

Use Case White-Box Activity Diagram Decomposition Lvl 1

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 15

Fundamentals of Harmony for

Systems Engineering

Uc_HomingAndManualMode_WB_Sc1

User Proc1

Proc2

Proc3

displaySyst

reqSetOpMode("Manual")

\ setOpMode("Manual")

reqSetAxis("AxisC")

| setAxis("AxisC")

-

qSetDirection("DirectionA")

setDirection("DirectionA")

reqSetSpeed(Speed)

setSpeed(Speed)

Proc1:Proc1

reqCheckPosAxisK()

displaySystemStatu
[: s] ;
User

setOpMode

[OpMode == "Manual"] (OpMode=="Homina]
User
setdodis
— User

JUPUSSIN PR T AP POPY I TN || N AP ot ot B

AT

‘= BT e, STz s
b : ot U L b WP

[User Input == User
<‘l\ "poisC"] 1]
> [seorectr]
User
[else]

setSpead

User

[User Input == "AxisE"]

setDirection

B st Bath s Mo sathes.

reqDisplaySystemStatus()

checkPosAxisK(StatusAxisK)

CheckPosAxisG(StatusAxisG)

reqCheckStatusAxisC()

hecl

|
|
|
|
K

S\oY

ANEEEEEEEEEEEREEEREEEEEERERRRRRERRRRRR AR AARNNNNN

isplaySyst
PrE TR OLE T

L R

X
|
4

A e e e, ———re

(et

[Uzernput == Dir ectionA)

[User Input == DirectionB]

checkPosAxisE

[AxisB in SafePos]

checkStatusAxisC [AxisG in SafePos]

[el=e] [Userinput == Directions]
[#xisC Homed] [el=e]
e | (F)
1
- Start

= e S Y Y

T e NP

AxisC(S AxisC)
mvCmddAxisL_Slow()
P R S P g .\‘_.,__J____J—_,_, L PR

e A s

checkPosfAodsk

[Axisk in SafePos]

CheckFPosiwisG

¥

T e TP L

Fig. 2-13 Derivation of White-Box Scenarios from a Use Case White-Box Activity Diagram (ref. Fig. 2-5)

Harmony for SE Deskbook | 16

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Fundamentals of Harmony for Systems Engineering

2.2.4 Systems Engineering Hand-Off

In a Model-Driven Development the key artifact of the hand-off from
systems engineering to the subsequent system development is the
baselined executable Integrated System Architecture Model. This
model is the repository from which specification documents (e.g.
HW/SW Requirements Specifications, ICDs ...) are generated. Scope
and content of the hand-off is dependent on the characteristics of the
project and the organizational structure systems engineering is
embedded.

If the SuD is one specific software configuation item (Cl), systems
engineering may stop at the system functional analysis level. In this
case, the hand-off will be executable use case models.

From the organizational point of view, if there is a separation between
systems engineering and subsystems engineering, systems
engineering may stop at the first level of system architecture
decomposition. In this case the hand-off will be composed of relevant
executable subsystem models.

If systems engineers hand-off their specifications directly to HW/SW
development, the hand-off will be respective executable HW and/or
SW configuration item (CI) models.

In any of these cases the hand-off packages are composed of:

e Baselined executable ClI model(s)

e Definition of Cl-allocated operations and attributes including links to
the associated system functional and performance requirements

e Definition of Cl ports and /ogical — optionally operational - interfaces

Definition of Cl behavior, captured in a statechart diagram

e Test scenarios — also referred to as Integration Test Scenarios —
derived from system-level use case scenarios

e Cl-allocated non-functional requirements

It should be noted, that the baselined Integrated System Architecture
Model becomes the reference model for further development of
system requirements.

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 17

Fundamentals of Harmony for Systems Engineering

2.3 Essential SysML Artifacts of Model-based Systems Engineering

SysML defines the standardized “vocabulary” of the language for
model-based systems engineering. As a standard, this vocabulary
needs to cover all possible applications. But SysML does not specify
how to apply these words. Systems engineering is strongly
communication driven. Systems engineers have to communicate with
stakeholders from different domains, like electrical engineers,
mechanical engineers, software engineers, test engineers, and - not to
forget - the customer who is not necessarily an engineer. In such an
environment it is paramount to keep the language domain independent
and as simple as possible. The goal should be to minimize the
amount of language elements. The fewer elements are used, the
better. The compliance to a standard does not mean that all elements
of this standard have to be applied. It is good practice to standardize
the usage of SysML within the organization, if a company wants to
deploy SysML-based systems engineering. This paragraph provides
an overview of the SysML artifacts that are considered essential in the
model-based systems engineering process Harmony for Systems
Engineering.

SysML reuses a subset of the UML 2.3 and extended it by systems
engineering specific constructs. Fig. 2-14 visualizes the relationship
between the UML and SysML by means of a Venn diagram, where the
set of language constructs that comprise the UML and SysML
languages are shown as circles marked UML 2.3 and SysML 1.2,
respectively. The intersection of the two circles indicates the UML
modeling constructs that SysML reuses (UML4SysML). In order to
provide a seamless transition from systems engineering to software
development, a respective process should focus on UML4SysML.

UML4SysML

Fig. 2-14 Overview of UML/SysML Interrelationship

SysML Diagram

Structure Diagram Behavior Diagram Requirements Diagram

AN
Block Definition Diagram | | Use Case Diagram
Internal Block Diagram | | Sequence Diagram
ﬁl | | Activity Diagram
Parametric Diagram
Statechart Diagram
I

Fig. 2-15 Taxonomy of SysML Diagrams Used in
Harmony for Systems Engineering

Fig. 2-15 shows the taxonomy of SysML diagrams used in Harmony
for Systems Engineering. Essentially, there are three categories of
diagrams:

- Structure Diagram,
- Behavioral Diagram, and
- Requirements Diagram.

The color code of the Venn diagram is also applicable to this diagram.
Some of the diagrams have two colors. This indicates that SysML
extended the initial UML artifact.

The following paragraphs outline the usage of these diagrams in
Harmony for Systems Engineering. and list the elements that are
considered essential.

Harmony for SE Deskbook | 18

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

2.3.1 Requirements Diagram

A Requirements Diagram graphically shows

Fundamentals of Harmony for Systems Engineering

the relationship among textual requirement elements
(<<derive>>, containment)
the relationship between requirements and model elements
(<<trace>>, <<satisfy>>), and
the dependency between a requirement and a test case that
verifies that the requirement is met (<<verify>>).

RD_Reqgs)

«Requirement»

SRS_Req 1.1.1.x

«derive»

«satisfy»

«block»

SS_B

«Requirement»

SRS_Req 1.1

«Requirement»

SRS_Req 1.1.1

«trace»

Fig. 2-16 Requirements Diagram

Containment
- —Relationship

2.3.2 Structure Diagrams

2.3.2.1 Block Definition Diagram

The SysML Block Definition Diagram is the equivalent to a class
diagram in the UML. It shows the basic structural elements (blocks) of
the system and their relationships / dependencies. Internal connectors
are not shown.

BDD_SuD J

« block» «;block»0

SS_A SS_B

Fig. 2-17 Block Definition Diagram

2.3.2.2 Internal Block Diagram

The SysML Internal Block Diagram shows the realization of the system
structure defined in the Block Definition Diagram. It is composed of a
set of nested parts (i.e. instances of the system blocks) that are inter-
connected via ports and connectors.

IBD_SuD J

Fig. 2-18 Internal Block Diagram

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Harmony for SE Deskbook | 19

Fundamentals of Harmony for Systems Engineering

Ports

A port is a named interaction point between a block or a part and its
environment. It is connected with other ports via Connectors. The
SysML defines two types of ports: Standard Ports and Flow Ports.

The main motivation for specifying such ports on system elements is
to allow the design of modular reusable blocks, with clearly defined
interfaces.

Standard Ports

A UML/SysML Standard Port is a named interaction point assigned to
a block, through which instances of this block can exchange
messages. It specifies the services the owning block offers (provides)
to its environment as well as the services that the owning block
expects (requires) of its environment.

There are two different kinds of Standard Ports:

e Delegation or Relay ports forward requests to other ports.
e Behavioral ports are parts of the block that actually
implements the service.

Behavioral
Delegation Port
Port 2

O
iB2_B1

1 iB2_B1

iB1_B2

Required Provided
Interface Interface

Fig. 2-19 Standard Ports

A standard port is specified via its provided and required interfaces. A
provided interface (denoted by a lollipop symbol) specifies a set of
messages received at that port from elements outside the block. A
required interface (denoted by a socket symbol) specifies a set of
messages sent from that port to elements outside of the block. Thus,
by characterizing an interface as required or provided, the direction of
the constituent messages at the port is defined.

Flow Ports

A SysML Flow Port specifies the input and output items that may flow
between a block and its environment. Input and output items may
include data as well as physical entities, such as fluids, solids, gases,
and energy. The specification of what can flow is achieved by typing
the Flow Port with a specification of things that flow.

There are two different kinds of Flow Ports:
e An Atomic Flow Port relays a single item that flows in or out.

¢ A Non-Atomic Flow Port relays multiple items, listed in a
respective “flow specification”.

«Interface »

NavDat

= « flowAttribute » Longitude(Out):double
B «flowAttribute » Latitude(Out):double

Non-Atomic Flow Port

itsGPS ' itsSuD

fp:NavDat[: fp:NavDat

Elevation:double [Elevation:double

Speed:double

Speed:double B

Atomic Flow Port

Fig. 2-20 Flow Ports

Harmony for SE Deskbook | 20

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Fundamentals of Harmony for Systems Engineering

2.3.2.3 Parametric Diagram

A Parametric Diagram is a special type of an Internal Block Diagram.
It visualizes the parametric relationship between system properties. It
is an integral part of technical performance measures and trade
studies.

Constraints among system properties are specified in Constraint
Blocks. Constraint blocks are defined in a Block Definition Diagram
and “used” in the Parametric Diagram by binding their parameters to
the specific properties of a block

BDD_MassConstraints J

«ConstraintBlock»
NewtonLaw

) Constraints
Biforce = mass * acceleration

Attributes
Emass: Kg
force:Newtons
Hacceleration:MetersPerSec’2

Fig. 2-21 Constraint Block Definition in a Block Definition Diagram

ParD_TotalMass J
1 «C intProperty,C
itsNewtonLaw:NewtonLaw
{1 force = mass * acceleration
«Attribute»
mass mass:Kg «Attribute»
force:Newtons force
«Attribute»
leration I ion:MetersPerSec”2

Fig. 2-22 Parametric Diagram

2.3.3 Behavior Diagrams

UML/SysML provides four diagrams that express the functional and
dynamic behavior of a system:

Use Case Diagram
Activity Diagram
Sequence Diagram and
Statechart Diagram

Although each diagram focuses on a specific behavioral aspect, the
information provided by these diagrams overlap each other. For
instance, both the sequence diagrams and the activity diagrams
describe interactions. There may also be an overlap between the
behavior captured in activity diagram and the statechart diagram,
since SysML extended the UML activity diagrams by adding the
notation of dynamic behavior (control of actions).

In order to minimize the overlap between the different behavioral
diagrams, decisions should be made upfront, which role the individual
diagrams should play in the context of the modeling workflow. The
next step should be to “standardize” the usage of diagram elements by
filtering-out in each diagram those elements that are considered
essential.

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Harmony for SE Deskbook | 21

Fundamentals of Harmony for Systems Engineering

2.3.3.1 Use Case Diagram

A Use Case Diagram captures the functional requirements of a system
by describing interactions between users of the system and the
system itself. Note that as a system is decomposed, users of a given
system could be external people or other systems. A use case
diagram comprises a system boundary that contains a set of use
cases. Actors lie outside of the system boundary and are bound to
use cases via associations.

A use case describes a specific usage (“operational thread”) of a
system:

o the behavior as perceived by the users (actors) and
¢ the message flow between the users and the use case.

A use case does not reveal or imply the system’s internal structure
(“black-box view”).

ucb_sub J
SuD
eS| %

Fig. 2-23 Use Case Diagram

When use cases get too complex, dependencies between use cases
may be defined:

o <<include>>
One use case includes another
o <<extend>>
One use case provides an optional extension of another
e Generalization
One use case is a more specialized or refined version of another

2.3.3.2 Activity Diagram

An Activity Diagram is similar to the classic flow chart. It describes a
workflow, business process, or algorithm by decomposing the flow of
execution into a set of actions and sub activities joined by transitions
and various connectors. An activity diagram can be a simple linear
sequence of actions or it can be a complex series of parallel actions
with conditional branching and concurrency.

NOTE: In Harmony for Systems Engineering the terms activity, action
and operation are synonymous.

Actions may be grouped and assigned to objects — e.g. subsystems.
In this case, the activity diagram is split into swim lanes that depict the
respective responsibilities.

NOTE: Harmony for Systems Engineering uses a SysML activity pin
stereotyped ActorPin to visualize the interaction of an action/operation
with the environment. The name of the pin is the name of the
associated actor, the arrow in the pin shows the direction of the link.

AD_Uc2)

Fig. 2-24 Activity Diagram

Harmony for SE Deskbook | 22

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Fundamentals of Harmony for Systems Engineering

2.3.3.3 Sequence Diagram

Sequence Diagrams elaborate on requirements specified in use cases
and activity diagrams by showing how actors and blocks collaborate in
some behavior. A sequence diagram represents one or more
scenarios through a use case.

A sequence diagram is composed of vertical lifelines for the actors and
blocks along with an ordered set of messages passed between these
entities over a period of time.

e Messages are shown as horizontal lines with open arrows between
the vertical object lines (lifelines).
NOTE: UML/SysML differentiates between synchronous and
asynchronous messages. In Harmony for Systems Engineering the
message-based communication is described via asynchronous
messages (two-line arrowhead).

e Operations are depicted as reflexive (synchronous) messages (full
arrowhead) at associated lifelines.

e Quality of Service (QoS) requirements may be added as comments
and/or constraints.

| sb_uet_set J
itsA1 itsUc1

op1()

P

C1==true

o

regActivateS2()

POTIIIIIIIIeT \\\\\\\L CUTTIITIIIII

parallel op2()

Interaction Operatgr

setStatus() @ 10 ms

op3()

]
s ms @ op4()
]

reqDeactivateS2()

opi()

Fig. 2-25 Sequence Diagram

2.3.3.4 Statechart Diagram

A Statechart Diagram describes the state-based behavior of a block.
In the Harmony for Systems Engineering workflow it is considered the
most important behavior diagram, as it aggregates the information
from both the activity diagram (functional flow) and the sequence
diagrams (interactions with the environment), and adds to it the event-
driven block behavior. As the “language” of statecharts is formally
defined, the correctness and completeness of the resulting behavior
can be verified through model execution.

Statechart diagrams are finite statemachines that are extended by the
notation of

e Hierarchy
e Concurrency

Basically, a statechart diagram is composed of a set of states joined
by transitions and various connectors. An event may trigger a
transition from one state to another. Actions can be performed on
transitions and on state entry/exit

SCD_Uc1Ctrl J
s1 @

| s2

| A21

[C1==true]/iop3 5)I op4
© -
else]/opS
ev2 |l evi

$213

T
|
|
|
|
|
|
|
[} tm(10
! P tm(10)
|
|
|
|
|
|
1

Fig. 2-26 Statechart Diagram

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Harmony for SE Deskbook | 23

Fundamentals of Harmony for Systems Engineering

2.3.4 Artifact Relationships at the Requirements
Analysis / System Functional Analysis Level

Fig. 2-27 shows, how the different SysML artifacts are related to each
other at the requirements analysis and system functional analysis
level.

o A Requirements Diagram visualizes the dependencies of at least 3
requirements.

e A Use Case Diagram contains minimum one Use Case.
o Use cases are traced to at least one requirement.

e A use case should always have one Activity Diagram that captures
the functional flow.

e A use case should be described by at least 5 Sequence Diagrams.

o When it comes to building an executable use case model, the
model is described by an Internal Block Diagram

e The Internal Block Diagram should contain instances of at least two
Blocks (use case block and actor block(s)).

¢ The block properties are described by operations, attributes, ports
and interfaces.

e The state-based behavior of each block instance is described by a
Statechart Diagram.

Requirements Diagram Requirement

1

istraced to
*

Use Case Diagram 1 1 Use Case

Activity Diagram 1

Sequence Diagram 5% 1

Internal Block Diagram

1

Block

Statechart Diagram

11

Operation

*

1. Port

[P]

[Requirements Analysis [] Functional Analysis

Fig. 2-27 SysML Artifacts Relationship at the
Requirements Analysis / System Functional Analysis Level

Harmony for SE Deskbook |24

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Fundamentals of Harmony for Systems Engineering

2.4 Service Request-Driven Modeling Approach

In the Service Request-Driven Approach, the communication between blocks is based on asynchronous messages (“service requests”) via SysML
Standard Ports. A service request always is followed by an associated provided service at the receiving part — either state/mode change or operation.
First, the service requests and associated operations have no arguments. At a later stage arguments may be added to the service requests and
associated operations or listed in the associated description field of the relevant service request and associated operation.

-

IBD_SuD / @
itsB1:B1 itsB2:B2 @
| reqOperation1() 1
i 1 operation1()
I reqSetMode(ModeX)
I N
|
: reqOperation2() |
IBD_SuD / %perationZ() :
e '
|
itsB1: @ 1 . | reqOperation3 |
itsB1:B1 itsB2:B2 : aop 0 —1 operation3()
| q
= reqOperation2 B regSetMode I reqOperation4() I
B reqOperationd & reqOperationt | operation4() |
= operation2 & reqOperation3 :z |
& operation4 = operation1 !
& operation3 ! !
IBD_SuD /

iB1_B2 iB1_B2 7
itsB1:B1 itsB2:B82
pB2 pB1
reqOperation2 = reqSetMode

=
& reqOperationd | . . & reqOperation1
= operation2 iB2_B1 iB2 B1 =) reqOperation3
= operation4 = operation1
= operation3
«Interface» «Interface»
iB1_to_B2 iB2_to_B1
@ & reqOperation2 & reqSetMode
reqOperation4 ¥ reqOperation1
= reqOperation3

©
®

©

®

The approach is performed in four steps:

It starts with the definition of the network
nodes by means of SysML structure
diagrams, using blocks as the basic
structure elements. First, these blocks are
empty and not linked.

In the next step, the communication between
the blocks is described in a UML/SysML
Sequence Diagram.

NOTE: In the Rhapsody tool the Sequence
Diagram may be automatically generated
from an underlying Activity Diagram by
means of the SE Toolkit (ref. Section 4.4.1.3).

The next step is the allocation of the service
requests and operations to respective blocks.
NOTE: In the Rhapsody tool this step is
automated through the Auto Realize feature.

Based on the allocated service requests, the
associated SysML Standard Ports and
interfaces now can be defined.

NOTE: In the Rhapsody tool this step is
semi-automated by means of the SE-Toolkit
(ref. Section 4.4.1.4).

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Harmony for SE Deskbook | 25

Rhapsody Project Structure

3 Rhapsody Project Structure

This section describes the project structure that should be followed when the Rhapsody tool is used in a model-based systems engineering project.
The details are shown considering as an example the Security System Model of the Deskbook case study.

3.1 Project Structure Overview

On the top-level, the project structure shows two types of packages:] SecuritySystem
)))) - Components
o Packages that contain the artifacts generated in the different SE- =L Packages
phases, i.e. #-f3 RequirementsAnalysisPkg
, . -E3 Functional AnalysisPkg
- RequirementsAnalysisPkg &+ DesignSynthesisPkg
- FunctionalAnalysisPkg H-E0 ActorPkag
- DesignSynthesisPkg -5 InterfacesPkg
-4 TypesPkg
e Packages that contain system-level model definitions, i.e. % PredefinedTypes (REF)
-5 PredefinedTypesCpp (REF)
- ActorPkg B0 Profiles
- InterfacesPkg and
- TypesPkg

Project Structure Overview

Harmony for SE Deskbook | 26 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Rhapsody Project Structure

3.2 Requirements Analysis Package

Constituents of the RequirementsAnalysisPkg are

o RequirementsPkg and
o UseCaseDiagramsPkg

The RequirementsPkg contains the system requirements (“shall”

statements) generated from the stakeholder requirements and [T T T T e e T e e
imported from DOORS. . RequlrementsAnalysmPkg
=3 Packages
))))) =53 RequirementsPkg
During the system functional analysis and design synthesis phase ¢ -0 Packages
additional requirements may be identified. Temporarily, they will be EE SecSysReqs
located in the DerivedRequirementsPkg. Once they are approved ;ggﬁeﬂgg%mg;‘“
through model execution, the system requirements database in e fmm[?m,s Harmony
DOORS will be wupdated accordingly. The wupdated system §:| DerivedReqsPkg
requirements then are exported from DOORS to Rhapsody and linked (S l-gseCaseDlagramstg
to the associated model artifacts. FH& Actors
L EHy User
))) . [y Admin
The UseCaseDiagramsPkg contains the use cases incl the system B Camera
requirements related dependencies, the actors as well as the use case . [y AccessPoint
diagram(s) B D Use Case Diagrams
. {7 UCD_SecuritySystem
.) = [B Use Cases
NOTE: Initially, use cases and actors are located in the 4> UclControlEntry
UseCasesPkg. In the system functional analysis phase the use cases o, EPUcControlExit |
are moved into respective use case packages in the |
Zugctic")pr;(alAnalysistg and the associated actors are moved into the Requirements Analysis Package
ctorsPkg.

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 27

3.3 Functional Analysis Package

System functional analysis in Harmony for Systems Engineering is use
case based. Each use case of the system-level use case diagram(s) is
translated into an executable model. The FunctionalAnalysisPkg
contains the artifacts generated in the system functional analysis phase.

For each use case of the use case diagram, there is a package
<UseCaseName>Pkg that contains the associated model artifacts:

o A category Blocks containing the definition of the use case block
Uc_<UseCaseName>. This block includes the associated statechart
diagram.

o Afolder Internal Block Diagrams with the internal block diagram
IBD_<UseCaseName>

o A folder Packages that contains

- A package <UseCaseName>_ExecutionScopePkg that defines
the context of the use case model execution, i.e. the instances of
the actor(s) and the use case block as well as the definition of their
links.

- A package <UseCaseName>_BBScenariosPkg which holds the
use case scenarios.

o A category Use Cases with the use case descriptions, i.e.

- The category Activity Views which contains the black-box activity
diagram <UseCaseName>_BlackBoxView and a folder
Sequences that contains the references to use case scenarios,
which were derived from the black-box activity diagram (ref.
Section 4.4.1.3).

- The category Association Ends which contains the definitions of the
associations between the actor(s) and the use case.

- The category Dependencies which contains the frace dependencies
between the use case and the associated system requirements.

e

S L T e e e

£ FunctionalAnalysisPkg
—I-CJ Packages
=51 UclControlEntryPkg
=2 Blocks
=I-CJ Uc_UclControlEntry
+-(= Attributes
+-= Generalizations
+-(2 Operations
+-(& Standard Ports
+-(2) Statechart
—I-J Internal Block Diagrams
Lo IBD_UclControlEntry
—I-C0 Packages
57 UclControlEntryBBScenariosPkg
457 UclControlEntryExecutionScopePkg
== Use Cases
=& UclControlEntry
=2 Activity Views
| e UclControlEntryBlackBoxView
-+ Activity
: +- 0 Sequences
+-2s Dependencies
- Hyperlinks

R Y

Functional Analysis Package

Harmony for SE Deskbook | 28

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

M e e g T e—

Rhapsody Project Structure

3.4 Design Synthesis Package]]
3.4.1 Architectural Analysis Package

The DesignSynthesisPkg is partitioned into two packages
The ArchitecturalAnalysisPkg contains the artifacts that are created

when a trade-off analysis is performed prior to the architectural design.

e ArchitecturalAnalysisPkg and
For details please refer to Section 4.5.1.

e ArchitecturalDesignPkg

Tt s = B s S

EI ArchltecturaIAnalymstg
=0 Packages
W& SecuritySystem| El%l gadeStudyAnalysistg
-0 Packages
g p:pksggf nts =7 BiometricScanTradeStudy
H-57 RequirementsAnalysisPkg El D Block Definition Diagrams
F-£9 Functional AnalysisPka %g EBB ga?turZBlolmetrchataOptlon
Do _OptionAnalysis
E %I E_le ;[agc'laszgﬁhes'spkg é--g‘a BDD_SolutionArchitecture
. 53 ArchitecturalAnalysisPkg =+ Blocks])
. [H53 ArchitecturalDesignPkg +-CJ CaptureBiometricData
H-53 ActorPkg I:l Optical S_canner
&I InterfacesPkg I:l FingerprintScanner
&l TypesPkg I:l FingerprintScannerArchitecture
H-53 PredefinedTypes (REF) i OpticalScannerArchitecture
i-£7 PredefinedTypesCpp (REF) el e QIS et e .
(-3 Profiles

Architectural Analysis Package
Design Synthesis Package

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 29

3.4.2 Architectural Design Package

Constituents of the ArchitecturalDesignPkg are:

e A folder Block Definition Diagrams with the SuD level 1 block
definition diagram BDD_<SuDName>

o A category blocks containing the definitions of the SuD block,
including instances of its parts and the definition of associated
Delegation Ports.

e A folder Internal Block Diagrams with the internal block diagram of
the SuD system architecture IBD_<SuDName>

o Afolder Packages that contains

- An ExecutionScopePkg which defines the context of the
architectural model execution, i.e. the instances of the actor(s) and
the SuD block as well as the definition of their links.

- A package <Block>DecompositionPkg the constituents of which

are:

Packages <Part>Pkg, each of which holds the definitions of
the relevant part. If a part is further decomposed, it will
contain a package <Part>DecompositionPkg with packages
of its associated sub-blocks each of which will be
decomposed according to the outlined structure.

A package <Block>WB_AD which contains the decomposed
white-box activity diagram(s) of the system use case(s),

A package <Block>WB_UcSD which holds the decomposed
system use case scenarios,

AT R Y T - =

e e
EI DeS|gn5ynthes|sPl{g
-0 Packages
------ «F7 ArchitecturalAnalysisPkg
4-@ ArchﬂecturalDesmnPkg
Exg = Block Definition Diagrams
—-w Blocks
—I-CJ SecuritySystem
+-= Association Ends
= Attributes
‘& connectors
= Operations
i Parts
‘g itsFingerprintScanner
itsCardReaderEntry
itsSecSysController

!.

- | - _!_._ _!_._

(5
E
['g itsCardReaderExit
+-= Standard Ports
—I- Internal Block Diagrams
. E5 IBD_SecuritySystem
=0 Packages
+ 1 ExecutionScopePkg
= EI SecurltySystemDecnmpnsﬂlnnPkg
=- Packages
+-f7 CardReaderEntryPkg
[CardReaderExitPkg
+-57 FingerprintScannerPkg
;1 SecSysControllerPkg
+-57 SecuritySystemWB_AD_Ucl
5 SecurltySystemWB SD_ Ucl

R R R S e

Architectural Design Package

Harmony for SE Deskbook | 30

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Rhapsody Project Structure

3.5 System-Level Definitions

On the top-level of the project structure there are three packages for
system-level definitions:

o ActorPkg
o InterfacesPkg
o TypesPkg

The ActorPkg contains the definitions of all the actors identified in the
system-level use case diagram(s). Each actor may contain a
statechart diagram.

The InterfacesPkg contains the definition of interfaces and associated
events. The interfaces may be grouped in packages corresponding to
the associated use case model(s) and the system architecture model.

The TypesPkg contains the system-level data definitions.

=

0 TypesPkg

et b b, At A et cnt e o)

" ActorPkg
fE Actors
E = User

- [#+ Association Ends

#-£3 Ucl_BB_InterfacesPkg
#-£3 Ucl_WB_InterfacesPkg

System-Level Definitions

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Harmony for SE Deskbook | 31

4 Case Study: Security System

Harmony for Systems Engineering is tool independent. In this section a case study exemplifies, how the workflow that was outlined in the previous
sections is applied using the Rhapsody tool. The chosen example is a Security System.

The Rhapsody tool supports model-based systems engineering through a special add-on — the SE-Toolkit. This toolkit contains features that
automate many of the tasks in a systems engineering workflow. It should be noted, that most of these features are process-independent. The focus
of this case study is on the usage of these features in the different phases of Harmony for Systems Engineering.

4.1 Case Study Workflow

SystemRegs Requirements Analysis
Fig. 4-1 provides an overview of the MbSE workflow followed [+]
in the case study. It shows for each of the SE phases the (Define & Rank System-Level Use C“Ls_) 20D Narmer RA
generated key handoff artifacts together with the associated UcA:,dsysReqs -
Rhapsody projects. The reason for splitting the workflow into
different Rhapsody projects is, that it supports the Functional Analysis

collaboration of distributed teams.

UcAndSysReqs

Analyze BB UC1

BB_UC1_Model

UcAndSysReqs

Analyze BB UCn

BB_UCn_Model

The workflow is use case based. It starts with the import of
the elaborated system requirements from DOORS to the
Rhapsody project <SuD Name>_RA and the definition of the
system-level use cases. The handoff to the subsequent
functional analysis phase are the use cases and the Architectural Analysis

associated system requirements. @ade Stady Rhapsody Project | Rhapsody Project

n <SuD Name>_AA Uc<Nr><Use Case Name>
In the functional analysis phase the chosen use cases are sys;mArchnecmresmure
transformed into executable black-box (BB) use case
models. The modeling is performed for each use case in a
separate Rhapsody project (Uc<Nr><Use Case Name>).) _

The verified/validated black-box use case models and | G SystemArchitecture

associated functional requirements are the input to the ,
subsequent design synthesis phases.
RealizedUC1 RealizedUCn

Architectural Design

Architectural analysis is performed in a separate Rhapsody
project <SuD Name>_AA based on the verified/validated RealizedUcA RealizedUCn
functional system requirements. Additionaly, non-functional [e] nl

requirements (design constraints) are taken into @;’-”e Realized Use Cases) Riiapsody Project
consideration. The elaborated system architecture structure IntegratedSystemArchitecture é
is the handoff to the subsequent architectural design phase.

Fig. 4-1 MbSE Workflow and Associated Rhapsody Projects

Harmony for SE Deskbook | 32 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Architectural design is performed in two steps.

First, each of the black-box use case models is realized, i.e.
transformed into a white-box model based on the system architecture
structure provided by the architectural analysis model. The realization
is performed in respective Rhapsody projects defined in the functional
analysis phase.

The correctness and completeness of each realized use case model is
verified through model execution.

Once all use cases of an increment are realized, they are merged in
the Integrated System Architecture model. The merger is performed in
a separate Rhapsody project <SuD Name>_lA.

The baselined Integrated System Architecture model is the key artifact
of the handoff to the subsequent system development. It is the
repository from which specification documents (HW/SW Requirements
Specifications, ICD’s , ...) are generated.

4.2 Creation of a Harmony Project Structure

A Harmony for Systems Engineering compliant project structure (ref.
Section 2) may be created by means of the SE-Toolkit feature Create
Harmony Project.

Start Rhapsody

In the main menu select File > New
Enter project name (e.g. SecuritySystem) and
select/define the associated project directory.

Select the SysML profile and create project..

Add the Harmony profile:

In the main menu select File / Add Profile to Model
Double-click Harmony

Double-click Harmony.sbs

Right-click the project name in the browser and
select SE-Toolkit > Create Harmony Project.

® 000600

4 Components

-I-(J Packages
4--§'__‘l RequirementsAnalysisPkg
] =00 Packages

+-(J Block Definition Diagrams ~f7 RequirementsPkg
4 Components =57 UseCaseDiagramsPkg
—I-0 Packages =I-3 Use Case Diagrams
£ Default = UCD_SecuritySystem
. B PredefinedTypes (REF) | =7 £7 Functional AnalysisPkg
. B0 PredefinedTypesCpp (REFY[| | i DesignSynthesisPkg

=I- Profiles — f | &7 ActorPkg
+-§3 HarmonySE (REF) [| & InterfacesPkg
+-Es SysML(REF) | &0 TypesPkg
=I-J Profiles

+-f5 SysML (REF)
+-3 HarmonySE (REF)

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Harmony for SE Deskbook | 33

4.3 Requirements Analysis

The workflow followed in the case study is shown in Fig. 4-2. It starts
with the import of the stakeholder requirements and derived system
requirements — both captured as Word documents — into Doors. Once
imported, the system requirements are linked to the stakeholder
requirements via <<satisfy>> dependency and the complete coverage
will be ensured

The next step in the Requirements Analysis workflow is the export of
the system requirements from DOORS to Rhapsody. This is
performed via Rhapsody Gateway.

In Rhapsody, the imported system requirements are grouped into use
cases and respective <<trace>> links from the use cases to the
system requirements are established.

Subsequently, the use cases incl. their links are exported from
Rhapsody via Gateway to DOORS.

It should be noted that the outlined workflow will be applied whenever
there will be a change or update of the requirements.

DOORS

Gateway Rhapsody _RA Project

StakehoderReqs

m !

Create Module
SecSysStakehoderRequirements

SystemReqgs
L] y

‘ Create Module ‘
SecSysSystemRequirements

:

G Import System Requirements ‘
SecSysSystemReqs to StakeholderReqs P y qui ‘ >

Populate RequirementsPkg

;

Define System-Level Use Cases

!

Link
SystemRegs to Use Cases

SecSysUseCases Module

Create ‘ Export Use Cases incl. Links L
« |

to DOORS b

8

Fig. 4-2 Requirements Analysis Workflow

Harmony for SE Deskbook | 34

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Requirements Analysis

4.3.1 DOORS: Import of Stakeholder

ReqUIrements File Edit View Favorites Tools Change Management Help
GaAR P EEI O]
3 Favorites[«| ' Location SecuritySystem 22
= L DOORS Database Name Type +
& SecuritySystem |23l SecSysStakeholderRequirements Formal EI
Open DOORS. In the Database Explorer, : 2
‘ select the project SecuritySystem. = il . :
Usemame: PeterHoffmann Usertype: Database Manage

‘ Open in the volume included to this Deskbook the Word document
SecSys Stakeholder Requirements 4.0.doc

ID I RegMame | SecSysStakeholderRequirements
SH1 System Overview A security system is to be developed that controls entry and exit to a
building through a single point of entry. Identification of personnel upon
‘ In the Word toolbar, click on the Export to DOORS icon. entry will be made by two independent checks. Each person will be
photographed upon entry and their time in the building monitored. Exit
criteria will be based upon one means of identification check.
SH2 Security Checks Secure areas shall be protected by two independent security checks, one|

‘ SpeC|fy the Module Name: based upon employee ID and one based upon biometric data. Access to

. . X secure areas will be unavailable until the users ID is confirmed. The
secsySStakehOIderReql"rements- SpeC|fy Prefix: SH. time between the two independent security checks shall not exceed a
configurable period. The user is allowed three attempts at biometric
(upon entry) and / or card identification (upon entry and exit) before
. use of the access point is completely disabled. Any denied access
‘ Click EXpOI't. attempt shall be logged, account details sent to the administrator and
an alarm signal raised.
SH3 Security Card The user shall not be allowed access unless he has a valid Security Card.
Security cards shall only contain the employee name and ID. Security
‘ Switch to DOORS and save the new module. cards shall be renewed yearly. Out of date security cards shall cause a
denial of access.
SH4 Biometric Scan The user shall not be allowed access unless their biometric data is
recognized. The biometric data shall be stored in the system database

M and not on the security card.

SH5 Access Priority The system shall only process one user at a time. The user shall be
Module Name: | SecSysSystemRequirements and Time given sufficient time to enter and exit the area before automatically
securing itself.
[pawz REmmpian: I SecSys System Requirsments 4.0 SH6 Exit requirements The user shall not be allowed to exit until the security card has been
successfully authorized.
Module Prefix: I SH . -~
SH7 Image Capture An image shall be taken of any person, at the initial attempt, when
Absolute Numbers Start At I 1 trying to access a secure area for logging time and employee 1D.
SH8 Time monitoring The time a user spends in a secure area shall be recorded. An alarm
P —— shall notify if a person stays longer than 10 hours in the secure area.
SHO Emergency Exit In the event of an emergency the administrator can invoke a "Free Exit
[iGapiuire paragraph styies: Mode". All security checks for exiting the area shall be disabled until the
: : administrator returns the system to normal working.
Progress SH10 Security Lockdown The administrator can invoke a security lockdown mode - in this event
Export | |7 ‘ Cancel | the system shall lock all access points until the administrator returns the
system to normal working.

Stakehoder Requirements Inported into DOORS

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 35

Case Study: Requirements Analysis

4.3.2 DOORS: Import of System Requirements

Module Name: I SecSysEystem Requirements

Open DOORS. In the Database Explorer,

select the project SecuritySystem | 5o oo Reairment: L0

Module Prefix: | SYS

Absolute Numbers Start AL | 1
‘ Open in the volume included to this Deskbook the Word document
SecSys System Requirements 4.0.doc ¥ Remove heading numbers

[v Capture paragraph styles

Progress
Export | |7 ‘ Cancel |

‘ In the Word toolbar, click on the Export to DOORS icon.

‘ Specify the Module Name:
SecSysSystemsRequirements. Specify Prefix: SYS.

‘ Click Export. ¢ \ &
File Edit View Fa\n;brites Tools Change Management Help
ioiehh | B S| e L] X
‘ Switch to DOORS and save the new module. * Favorites | v| | Location /SecuritySystem Z
=--11 DOORS Database Name Type +
-2 SecuritySystem |54 SecSysStakeholderRequirements Formal
SecBysSystemsReqguirements Formal =
< I | 3

Username: Peterdoffmann User type: Database Manage

Harmony for SE Deskbook | 36 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Requirements Analysis

D | RegName | SecSys System Requirements 4.0 RequirementType | D | RegName | SecSys System Requirements 4.0 RequirementType |
SYS1 Three Attempts On Upon entry the user shall be allowed three Functional 5Y518 Denied Exit The administrator shall be notified about any denied Functional
Employee ID Entry attempts on card identification. Notification exit. The notification shall include user account
SYS2 Three Attempts On Upon entry the user shall be allowed three Functional details.
Biometric Data Entry biometric data entries. SYS19 Alarm — Exit On a denied exit an alarm signal shall be raised. Functional
SYS3 Disabling User After three failed attempts at card identification or Functional 5Y520 Employee ID Card Exit shall be protected by a security check based Functional
Account biometric data entry the user account shall be Identification — Exit upon employee ID.
disabled. SYS21 Visualization of The user shall be visually informed about the status Functional
SYS4 Denied Entry Any denied access attempt shall be logged and Functional ;’f:tuur;t‘i ?;S Check of his/her ID card check.
Notification account details sent to the administrator. . - -
SYS5 Out of Date Cards Out of date cards shall deny entry and invalidate Functional SYS22 Security Lockdown ir;lat::{To?:\IF(E;Itl gisezzc:c;:msbf:glotwhgatgiﬁifgor Functional
—— the card. . returns the system to normal working.
SYS6 Authorization of Access to the secure area shall only be allowed Functional 5Y523 Emergency Exit In the event of an emergency all security checks for Functional
Security Card — Entry (with a valid security card. exiting the area shall be disabled until the
SYS7 Two Independent Secure areas shall be protected by two independent Functional administrator returns the system to normal
Security Checks security checks. working.
SYS8 Alarm — Entry On a denied entry an alarm signal shall be raised. Functional SYS24 Authorization of The user shall not be allowed to exit until the Functional
SYS9 Employee ID Card Entry shall be protected by a security check based Functional Security Card —Exit security card has been successfully authorized.
Identification — Entry upon employee ID. SYS25 Entry Time The user shall be given sufficient time to enter the ~ Non-
SYS10 Visualization of The user shall be visually informed about the status ~ Functional secure area. Functional
Security Card Check of his/her ID card check. SYS26 Time Between Two The time between the two independent security Non-
Status — Entry Independent Checks checks shall not exceed a configurable period. Functional
SYS11 Security Card Security cards only contain the employee name and ~ Functional SY527 Processing User The system shall only process one user at a time. ~ Non-
Information ID and will be renewed yearly. Request Functional
SYS12 Visualization of The user shall be visually informed about the status ~ Functional SYS28 Biometric Data Biometric data shall be stored in the system Non-
Biometric Data Check = of his/her biometric data check. Storage database and not on the security card. Functional
Status 5YS29 Time Recording The time a user spends in a secure area shall be Non-
SYS13 Approval of Biometric The user shall not be allowed access unless his/her Functional — recorded. Functional
Data biometric data are recognized. 5Y530 | Bxdt Time N bl be ai iciont ti i Non- |
SYS14 Biometric Scan Entry to the secure areas shall be protected by a Functional Iesulrjir:aa given sufficient time to exit the Functiona
E?;r?]l‘:r:ztszpzndent security check, based upon 5YS31 Automatic Securing Once the user has entered the secure area the Functional
i : o i the Secure Area — system shall automatically secure itself.
SYS15 Image Capture An image shall be taken of any person, at the initial Functional Entry
attempt, when trying to access a secure area. SYS32 Automatic Securing Once the user has exited the secure area the Functional
SYS16 Three Attempts On Upon exit the user shall be allowed three attempts ~ Functional the Secure Area — system shall automatically secure itself.
Employee ID Exit on card identification. Exit
SYS17 Time Limit Violation An alarm shall notify if a person stays longer than Functional 5YS33 Configuration of The time to enter and exit the secure area shallbe Non-
10 hours in the secure area. Entry and Exit Time customizable. Functional

System Requirements Imported into DOORS

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Harmony for SE Deskbook | 37

Case Study: Requirements Analysis

4.3.3 Linking System Requirements to Stakeholder Requirements

In the DOORS Database Explorer
select the SecuritySystem project.

In the menu, select File / New / Link Module...

Name the link module satisfy and click OK

In the pop-up window select Create new linkset.

For the Source module, click Browse... and

select the module SecSysSystemsRequirements.
For the Target module, click Browse... and

select the module SecSysStakeholderRequirements.

Click OK.

(1) DOORS Database: /SecuritySystem - DOORS o= =]
File Edit View Favorites Tools Change Management Help

oG PIEE L] X

Favorites[v ‘ Location /SecuritySystem 2>
= L) DOORS Database Name (@) |
& SecuriySystem [SecSysStakel]
[SecSysSysten biame
‘ | Descrip
Usemame: PeterHoffmann User type: Database Mana Mapping: l_Many‘-k_)—many ']

[ok][cancel || Help |

File Edit View Tools Help
e | (8] [Nolinksetselected
[Ereate new linkset (Ctrl+L) h

E

@— Source module:
Create a new linksetto
Targetmodule: [SecuritySystem/SecSysStakeholderR Browse...

[ok || cancel || Help |

File Edit View Favorites Tools Change Management Help

oA FIEE &AL X

 Favorites - | Location [SecuritySystem
=-1J DOORS Database Name Type: =
R Securiysystem) 3 satisfy Link
[z SecSysStakeholderRequirements Formal
SecSysSystemsRequirements Formal =
T »

Usermame: PeterHoffmann Usertype: Database Manage

Harmony for SE Deskbook | 38

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Requirements Analysis

Open the SecSysSystemsRequirements module. — —
Go to File / Module Properties. () SecsysSystemsRequirements Properties - DOORS (= @]=]

| General | Access | History| Linksets | Statistics | Discussions | Discussions Access List|

Default link modules for links from this module to other modules

In the Linksets tab, click Add.

| Target Module Link Module Status
I
Add.]| Remove |[Edi.
For the Target mOdUIe1 Only allow outgoing links to the target modules inthe above list

select the SecSysStakeholderRequirements module.
For the Link module,
select the satisfy link module.

BTl -2 Lo [T IS ystem/SecSysSystemsRequirements

Tick the “Mandatory” box. Targetmodule: /SecuritySystem/SecSysStakeholderR | Browse...
Link module: [SecuritySystem/satisfy Browse...
In the Linksets tab, tick [V|Mandstory [|Overideable
Only allow outgoing links to the target modules in the above list. [ok | [cancel | [Hep |
NOTE: This will prevent accidental links created in the wrong
direction.
[ok J[camcel [[Appy |[Hep

Click OK.

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 39

Case Study: Requirements Analysis

With the SecSysStakeholderRequirements and
SecSysSystemsRequirements modules both open on the screen,
drag a System Requirement onto the appropriate Stakeholder
Requirement. Select Make Link from Start to establish the link.
Repeat to create all necessary links.

=8 'SecSysSystemsRequirements' current 0.0 in /SecuritySystem (Formal module) - DOORS E@
File Edit View Insert Link Analysis Table Tools Discussions User Rhapsody 8.0 RGB8.0
Rhapsody 7.6 RG7.61 Change Management Help
 HBE [ze= || fF@@FEn | el
- View standard view vjanevesv] | i 25 |[EDT B 7 LAY
= Se‘l ID | SecSys System Requirements 4.0 -
SYS12 | The user shall be visually informed about the status of his/her otric data
check. —_——————————————————
5YS13 | |The user shall nd| | =
A recognized. File Edit View Insert Link Analysis Table 5 Discussions User Rhapsody 80 RG80 Rhapsody76 RG7.6.1
~ ||| SYS14 Entry to the secul Change Management Help
security chedi byl (@@ E | s @ | 83 P sl = Sojaig
SYS15 |§An image shall b |: view [Gangaraview | [anievels «| |- 4 7 <E 7 AL
RACCESSTH Se0Te [El-SecSysStakeholderRequirel| | |ID |SecSy olderRequirements e
SYs16 Upon exit the use - System Overview A secu - I
: SH1 erview
SYS1/7 An alarm shall ng Security Checks Secure 2 : be devel h I d exi
| e . Security Card The usersk system is to eveloped that controls entry and exit to a
5vs18 | "The administrat L BicetESeairThelEan R brough a single point of entry. Identification of personnel upon
he"a. ";":1' T - Access Priority and Time el be made by two independent checks. Each person will be
P mCl.' e us.en - Exitrequirements The use aphed upon entry and their time in the building monitored. Exit
SY519 [Ona :e“'?; exit Tage CEPE’E A?;Inge crite. 1 will be based upon one means of identification check.
SYSZD EX't sha prot - LIme monnonng e ume A
SYS21 | The user shall be - Emergency Extinthoeve | 512 geaE VDL i i
. . Security Lockdown The a Secure areas shall be protected by two independent security checks,
FEIS me" Lathh '“'“"*”’F‘F 2 one based upon employee ID and one based upon biometric data.
— Access to secure areas will be unavailal LA T
Usemame: PaterHoffmann Exclusive editm| confirmed. The time between the two i Make Link From Start
shall not exceed a configurable period. Make Link To Start
attempts at biometric (upon entry) and Co &
d exit) before use of the access o
entry an R exl Copy then link from Start L3
Any denied access attempt shall be log . e .
administrator and an alarm signal raiseq SRer kit
SH3 Security Card Cancel
The user shall not be allowed access unless hie hias a valid Security
Lt gt mh sante b o1, Secuity cards shallonly contain the employee pame and ID...

Harmony for SE Deskbook | 40 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Requirements Analysis

4.3.4 DOORS -> Gateway -> Rhapsody:
Import of System Requirements Y- Biiiey

File Edit Tool Help

-é [P’$5::5ys_m
The import of the system requirements from DOORS into Rhapsody is
performed in two steps. First the requirements are imported into the =
Rhapsody Gateway tool. Then the requirements are imported from s
Gateway into Rhapsody, i.e. the Rhapsody project SecSys_RA. 1d
Filters. = [DOORS Database EI
)) . g‘g r — F}Eéll%i:iife»mmsqwemm Profile:
Create a Harmony compliant Rhapsody project (ref. Section 4.2) el e R T e Soneloctfonots
and name it SecSys_RA. Exprossions | (1 Details| 1 Modification Fites] # Covers| T
Name Type of Analysis File or. User.
ecSysReqs (J)Doors Harmon eterHoffmann
‘ In the Rhapsody browser right-click SecSys_RA and select e
Rational Rhapsody Gateway / Open E[E = b

Import Requirements into Gateway ok | Gancel | emy | ‘

Select File / Edit Project to open the configuration window

Confirm the Configuration setup (OK)

_File Edit View Tools Reports Help . .
‘ Add a document to the canvas and name it SecSysReq BRI P R I c e ke
] Management View | 44 Coverage Analysis View| % Impact Analysis View| 3% Graphical View| & Requirement Details] £ Link Details
. Overall Quality: 0% Project Overview
‘ Add a coverage link from UML Model to SecSysReq i " ¥
(4
‘ Select as Type of Analysis DOORS Harmony % P
Project Details
. . . 2 documents
‘ Select in the File or .. pop-up window SiegaEi
DOORS Database / SecuritySystem / SecSysRequirements Size: 642K
Reguirements Information: Rule Check
i Section 'SecSys_RA'is empty. || # Uncovered requirement (33)
‘ Tick Extract only defined attributes and confirm (OK) 33 requirement(s)
33 uncovered requirement(s) -
I [4

Import Requirements into Rhapsody e —————
HE | aEdR 0o [PSriEaaa%E Bl ~14@@ |
In the Coverage AnaIyS|S VleW Se|eCt UML Model and TIManagement View eIiCD"'ETEIQEJ"'\“i'”ySiS\"ie'W|“1t‘lmpactAnalysis\.'iewlEﬂg(ﬁra[.)hlcﬂlVlewlﬁRecu,tiremervt Details| £ Link Details|
Upstream Coverage Information: Selection: Downstream Coverage Information:
Tools / Add h/gh level requirements JUML Model Rhapsody Sy 0%| #Rule check = |[-@UMLModel Rhapsody SysM 0%
{{)SecSysReqs Doors Harm 0% I*"_

BHC Secs AA
j)SecSysReqs Doors Harmony

) Three Attempts On Employee 1D Entry
G5 Three Attempts On Biometric Data Entry
EHDisabling User Account

G #JDenied Entry Notfication

IO of Date Cards

!
!
!
!
!
!
(2B Autgonzation of Seounty Card- Enty -

S s,

In the pop-up window select as Root package for requirements
RequirementsPkg

A AR o BAASR B e as

Confirm setup (OK) i AR

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 41

Case Study: Requirements Analysis

@IEM Rational Rhapsody Gateway - SecSys RA E@
File Edit View Tools Reports Help

NS ‘EE@'&“G Hﬂﬂ"&mm\'ﬁ\‘ﬂ“&\ﬂW\I(wﬁ"er) L”L‘QQ ‘ 4-3-5 Definition Of System-LeveI Use Cases

[T Management View 4 Coverage Analysis View |"u Impact Analysis View| 8% Graphical View| & Requirement Details]

1% Link Details|

Upstream Coverage Information: Selection: Downstream Coverage Information:
e e el o ~@MUMGS! RispsadySysu o The system requirements of the Security System are grouped into two
B0 Secdys .
ZE’ 2;_:55;::45 D{ (@ Add high level requirem... @ use cases:
Toree fteneta 0NN gelection | Advanced | Stereatypes |
BT i S [t Serte « Uc1ControlEntry
e o] | DSecSysReqs .
i-ojpabin ey o o Uc2ControlExit
i of Secu
-kl © The associated actors are
JEmployes 1D Card ldef EFESECSysjiA
B Visualizati sou = [JPackages
= Cardu:rﬂswma'l“ & l’_‘]Req%\rememsAna\ys\stg b User
]| —— Administrator
: - Facionanon S o Camera and
P Three Attempts On - P DesignSynthesig .
i Aoty | IR 2 scsarequremens e Access Point
Denied Ext Notficatio ‘-DAcmrPkg 0 modified requirements
E) Al - Exit P TypesPkg 0 requirements marked as deleted
g o _ o] o
J Lockdown !Lr[L
e S SRR | NN =P Rt L S SRR S e b e
SRy Open UCD_SecuritySystem and draw the use case diagram with the
5 O poonents two use cases and the associated actors.
=53 RequirementsAnalysisPkg
=1 Packages

=17 RequirementsPkg

b gg C!-ngissneqs UCD_SecuritySystem)

- Requirements

1 «fromDooars Harmonys Three Attempts On Employee ID Entry

1l «fromDoors Harmony= Three Attempts On Biometric Data Entry O O
«fromDoors Harmony= Disabling User Account -

«fromDoors Harmony= Denied Entry Notification Security System

«fromDoars Harmony» Out of Date Cards

«fromDoors Harmonys Authorization of Security Card - Entry

«fromDoors Harmony= Two Independent Security Checks

«fromDoors Harmony= Alarm — Entry

«fromDoors Harmony= Employee 1D Card Identification — Entry User Camera

«fromDoars Harmonys Visualization of Security Card Check Status — Entry

«fromDoors Harmonys Security Card Information O

«fromDoors Harmony= Visualization of Biometric Data Check Status

«fromDoors Harmony= Approval of Biometric Data

«fromDoaors Harmony= Biometric Scan

«fromDoors Harmonys Image Capture

«fromDoors Harmony= Three Attempts On Employee ID Exit

«fromDoors Harmony» Time Limit Violation Admin

«fromDoors Harmony= Denied Exit Notification

«fromDoars Harmony» Alarm — Exit

«fromDoors Harmony= Employee 1D Card Identification — Exit

«fromDoors Harmony= Visualization of Security Card Check Status — Exit . .

«fromDcors Harmony Security Lockdown Use Case Diagram of the Security System

«fromDoaors Harmony» Emergency Exit

«fromDoors Harmonys Authorization of Security Card — Exit

«fromDoors Harmony= Entry Time

«fromDoors Harmony= Time Between Two Independent Checks

«fromDoors Harmony= Processing User Request H H .

HomDoors Harmanys Biometric Data Starsge In order to support the update in case of requirements changes, define

«fromDoors Harmonys Time Recording o

«fromDoors Harmony= Exit Time the use cases as Unlts'

«fromDoors Harmony= Automatic Securing the Secure Area — Entry

«fromDoors Harmony= Automatic Securing the Secure Area — Exit

«fromDoaors Harmonys Configuration of Entry and Exit Time nght-Clle the use case and Se|ect Create Un,t
HH-E2# Stereotypes :

=7 UseCaseDiagramsPkg
[=-J Use Case Diagrams
w4 UCD_SecuritySystem

 FUnctionalANIVSISPRD. o L ses e e e

Uc2ControlExit

AccessPoint

)) B] B]))) B]) Bt B B]]) B B]] B B B] B B B = B

Imported System Requirements in SecSys_RA

Harmony for SE Deskbook | 42 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Requirements Analysis

4.3.5.1 Linking Requirements to Use Cases

System functional and non-functional system requirements are linked
to the use case with a <<trace>> dependency by means of the SE-
Toolkit feature Create Dependency.

NOTE: A system requirement may be associated to more than one
use case.

Exemplary, the is shown for the use case

Uc1ControlEntry.

linking process

In the Tools Menu select
Tools > SE-Toolkit > Modeling Toolbox

In the dialog box select Dependencies.
Select Profile: PredefinedTypes
Select Stereotype: frace.

In the UseCaseDiagramsPkg
select use case Uc1ControlEntry.

In the ModelingToolbox dialog box
click Set Source.

In the SecSysReq package
select the requirements the use case is linked to.

In the ModelingToolbox dialog box
click Set Destination.

In the ModelingToolbox dialog box
click Create Dependency with Stereotype.

iy

FH Hﬂ“ b

1

‘7— Set Source |

Lol mmn ms

RequirementsPkg
2 Packages
=N %ecSysReqs

{l <fromDoors Harmony= Three Attempts On Employee ID Entry
romDoors Harmony: Three Attempts On Biometric Data Ent

£ MM A R
£ [B B () B B = B B =1

ﬂ-ml-m-ﬂ-ml-m-ﬂ-

i

'l

o et | s Tt A oA P VAN b, e e p e

- Stereotypes
UseCaseDiagramsPkg

Actars

Use Case Diagrams

Use Cases

‘i— UclControlEntry

. -GS Association Ends

. B¢ Dependencies

«trace» Three Attempts On Employee ID Entry
«trace» Three Attempts On Biometric Data Entry
«trace=» Disabling User Account

«trace» Denied Entry Notification

«trace= Out of Date Cards

" iesirages Authorization of Security Card ZEMIY 0, e msson s gl

Options About
Exit

i
-0
-2
B

Set Destination

‘

Destination Metaclass

ultiple tems Selected
Check Dest Tab for Details

UseCase
el ControlEntry

Create Basic Dependency

Create Dependency with Stereotype

Profile:

IPredeflnedTypes LI
Stereotype:

Ilra:e LI

General Dependencies | Other | Generate SDs | Dest|

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Harmony for SE Deskbook | 43

Case Study: Requirements Analysis

Visualization of the Use Case Links to the Functional / Non-Functional System Requirements (Matrix View)

From: UseCaze Scope: UseCaseDiagramsPkg

|© Uc2ControlExit |

3 > Uc1ControlEntry

- |[[1] Three Attempts On Employee ID Entry " Three Attempts On Employee ID Entry
-‘é [J] Three Attempts On Biometric Data Entry " Three Attempts On Biometric Data Entry
g [t Disabling User Account “. Disabling User Account

g [1|Denied Entry Motification " Denied Entry Notification

- 11 Out of Date Cards "+ Out of Date Cards

&' |[1 1| Authorization of Security Card - Entry ", Authorization of Security Card - Entry

% |[L1] Two Independent Security Checks " Two Independent Security Checks

@ |1 Alarm - Entry " Alarm - Entry

;C}J [l }|Employee ID Card Identification - Entry " Employee ID Card Identification - Entry
? [t 1] Visualization of Security Card Check Status - Entry " Visualization of Security Card Check Status - Entry

[11]Security Card Information

[i]| Visualization of Biometric Data Check Status

[]]Approval of Biometric Data

[i]|Biometric Scan

[l]]lmage Capiure

[1]] Three Attempts On Employee 1D Exit

[1]] Time Limit Violation

[]]Denied Exit Notification

[[]]Alarm - Exit

[l]]Employee ID Card Identification - Exit

[i]| Visualization of Security Card Check Status - Exit

[[]]Security Lockdown

. Security Card Information “+ Security Card Information

" Visualization of Biometric Data Check Status

", Approval of Biometric Data

“, Biometric Scan

. Image Capture
“+ Three Attempts On Employee ID Exit
“« Time Limit Violation
“« Denied Exit Motification
" Alarm - Exit
- Employee |ID Card ldentification - Exit
"+ Visualization of Security Card Check Status - Exit

[l }|Emergency Exit

[i 1] Authorization of Security Card - Exit

“, Authorization of Security Card - Exit

[]|Entry Time

", Entry Time

[0 Time Between Two Independent Checks

" Time Between Two Independent Checks

[l]|Processing User Request

" Processing User Request "« Processing User Request

[i]|Biometric Data Storage

", Biometric Data Storage

[11] Time Recording

“+ Time Recording

(1| Exit Time

" Exit Time

[i i Automatic Securing the Secure Area - Entry

", Automatic Securing the Secure Area - Entry

[i}]Automatic Securing the Secure Area - Exit

“, Automatic Securing the Secure Area - Exit

[t }|Configuration of Entry and Exit Time

", Configuration of Entry and Exit Time “, Configuration of Entry and Exit Time

Harmony for SE Deskbook | 44

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Requirements Analysis

Visualization of the Requirements Coverage in Gateway

File Edit View Tools -.Reports.. Help
NS aR@®(00 [WEMna®R [P oy -] @ |

3 Management View %4 Coverage Analysis View | %y, Impact Analysis View| 32! Graphical View| & Requirement Details| 1% Link Details|
Upstream Coverage Information: Selection: Downstream Coverage Information: |
Rule check Rhapsody SysM33.9%
-z UML Model Rhapsody SysML
G SecSys AA
.)SecSysRegs Doors Harmony] =HE) ReguirementsAnalysisFka
B 2 Three Attempts On Employee 10 Enry

"?.F{equirernentType : Functional =g LselaselNagrams g

E}gThree Attempts On Biometric Data Entry .
%) Disabling User Accourt
% JDenied Entry Notfication
+%J0ut of Date Cards
%) 4y thorization of Security Card - Ertry
[+%JTwo Independent Security Checks
E}f‘;}\lan'n — Enttry
% JEmployee D Card Identification - Entry
%, JVisualization of Security Card Check Status - Entr
% JSecurty Card Information
(1%, J\isualization of Biometric Data Check Status
%) Anproval of Biometric Data
[}“J Biometric Scan
E}glmage Capture
#%JThree Attempts On Employee ID Exit
%) Time Limit Violation

[+ JDenied Exit Notification
4
4
E
£
4
4
4
4
4
4
4
4
4
4
E

File Edit View Tools Reports Help

N5 BEE DB E B feme v @ |

[Management View | 9 Coverage Analysis View| % Impact Analysis View| 33 Graphical View| & Requirement Details| 1% Link Details

Overall Quality: 93% Project Overview

93%

Project Details

2 documents

%] Alarm - Exit

% JEmployee ID Card Identification - Bt

+%Visualization of Security Card Check Status - Bt

19 Securty Lockdown]
H % JEmergency Exit [}
%] A thorization of Security Card - Exit

%) Entry Time

% I Time Between Two Independent Checks

}ngcessing User Request

}f‘;Biometn'c Data Storage

}g'ﬁme Recording

]""‘JExit Time

%] A tomatic Securing the Secure Ares - Entry

%] A tomatic Securing the Secure Area — Exit
}gConﬁgumtion of Entry and Bxit Time

Storage: File
Size: 644 K

Requirements i Rule Check:

Requirement 'Three Attzmpts On « ||= Uncovered requirement (2)
33 requirement(s) Employee ID Entry' is covered. %) Security Lockdown
%JEmergency Exit

2 uncovered requirement(s) -

NOTE: The system requirements Security Lockdown and Emergency Exit
intentionally were not linked to any use case

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 45

Case Study: Requirements Analysis

4.3.6 Rhapsody -> Gateway -> DOORS:
Export of Use Cases

In the Coverage Analysis View select UML Model and
Tools / Export Documents to DOORS

‘ In the Source (UML Model) window select UCD_SecuritySystem

‘ Click Update Tree button El and select SecuritySystem

In the Source (UML Model) window and Types window
Deselect all links

In the Types window select
- Elements / Use Case and
- Links / Trace

‘ Define as DOORS New module SecSysUseCases

‘ Click Export

’ G

Selection |Option5 I
Source (UML Model):

EHE 3 SecSys_RA
[CJComponents
L™ &]ModelExecution
[® 1Packages
EHW B RequirementsAnalysisPkg
E W (JPackages
[EgRequirementsPkg
= CiPackages
L[~ BaSecSysReq
[v FjUseCaseDiagramsPkg
=¥ (JUse Case Diagrams

& FJFunctionalAnalysisPkg
=" EaDesignSynthesisPkg
-7 FaActorPkg

-~ FinterfacesPka

B~ UCD_Sec uritySystem

Tvoes:

L B View
- [[]Requirement
-7 [Liimplicit Requirement
=1 [iiimportedRequirement

Links
[m2Reference
il - Trace

[¥ Satisfaction

[T "2, Verification

- I8 Denvation

- 9, Rhapsody_links

-7 ., Dependency

~" # Model HyperLink

- 4/ External HyperLink

-7 *1, Value Binding (Deprecated)

-

|_ Diagram images

<Custom=
Server:

User:

PeterHoffmann

Password.

-/ Allocation

Taraet:
= | DOORS Database
=@ SecuritySystem
t@ SecSysStakeholderRequirements
SecSysSystemsRequirements

Package lavout

| Single module j
New module:
|Sac5ysUseCsses
Prefoc
Export Close

Harmony for SE Deskbook | 46

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

| 3: Security Card The user shall n...

l

/SecuritySystem/SecSysStakeholderRequirements

Case Study: Requirements Analysis

' '

ot ags—crlmamddule, o, kil sl by e e e lih‘-h-ﬂ*.hzwpm,. - M;..EIM“ZL«"\

ID | RegName |SecSys-SylemsRequilemenB \\ll RequirementType
SYS6 Authorization of Security Access to the secure area shall only be allowed with a valid security card./: Functional
Card — Entry /
SYS7 Two Independent Secure areas shall be protected by two independent security checks. // ¥ Functional
Security Checks /
SYS8 Alarm — Entry On a denied entry an alarm signal shall be raised. / ¥ Functional
L. 8YSe=Empbe-an ID.Card | g =~

/
/

/SecuritySystem/SecSysUseCases

|

12: UclControlEntry '

File Edit View Favorites Tools Change Management Help

HEMx P EEEOR] X

 Favorites|

-| |: Location jSecuritySystem

Description

SecSysStakeholderRequirements
SecSysSystemsRequirements
SecSys_RAmpy

=1 DOORS Database Name Type
= SecuritySystem satisfy Link
SecSysStakeholderRequirements Formal
] SecSysSystemsRequirements Formal
] SecSysUseCases Formal
& Trace Link
l]

| 3

Usemname: PeterHoffmann

User type: Database Manage

,‘ /SecuritySystem/SecSysSystemsRequirements

4 1: Upon entry the user shall be a...

D |SecSys_RArpy El ,’/
9 |1 Use Cases
34 | 1.1 UciControlEntry
35 | 1.2 Uc2ControlExit

/SecuritySystem/SecSysSystemsRequirements

4 11: Security cards only contain th...

16: Upon exit the user shall be al...
17: An alarm shall notify if a per...
18: The administrator shall be not...
19: On a denied exit an alarm sign...
20: Exit shall be protected by a s...
21: The user shall be visually inf...
24: The user shall not be allowed ...
27: The system shall only process ...
29: The time a user spends in a se...
30: The user shall be given suffi...
32: Once the user has exited the s...
33: The time to enter and exit the...

2: Upon entry the user shall be a...
3: After three failed attempts at...

4: Any denied access attempt shal...
5: Out of date cards shall deny e...
6: Access to the secure area shal...
7: Secure areas shall be protecte...
8: On a denied entry an alarm sig...
9: Entry shall be protected by a ...
10: The user shall be visually inf...
11: Security cards only contain th...
12: The user shall be visually inf...
13: The user shall not be allowed ...
14: Entry to the secure areas shal...
15: An image shall be taken of any...
25: The user shall be given suffic...
26: The time between the two indep...
27: The system shall only process ...
28: Biometric data shall be stored...
31: Once the user has entered the ...
33: The time to enter and exit the...

DOORS Database and Links between Stakeholer Requirements, System Requirements and System Use Cases

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Harmony for SE Deskbook | 47

Case Study: System Functional Analysis

4.4 System Functional Analysis

System functional analysis is use case based. Each use case is
translated into an executable model. The model and the underlying
requirements then are validated through model execution.
Exemplarily, the two use cases Uc1ControlEntry and Uc2ControlExit

The system functional analysis workflow is supported by a number of
features of the Rhapsody SE-Toolkit. Fig. 4-3 details the workflow
and lists its support through the SE-Toolkit in the respective phases.

NOTE: In the case study, the chosen approach essentially follows the

will be translated into executable models. : } : s
“Alternative 2” approach described in Section 2.2.2 .

System Level Use Case and
System Requirements t

Define
Use Case Model Context

SE-Toolkit Feature:
Create System Model from Use Case

SE-Toolkit Feature:
e Add Actor Pins

Deflne
UC Functional Flow

:

Derive
UC Scenarios

:

C
[
[
.
[
[
[

SE-Toolkit Feature:
e Create New Scenario from Activity Diagram
» Perform Activity View Consistency Check

SE Toolkit Feature:
Create Ports And Interfaces

.

Define
UC Behavior

!

Verify UC Model
through Model Execution

—/ \ J \ J \ J \ J \ J

SE-Toolkit Feature:

System Regs Create Dependency

[L]
Baselined

BB Use Case Model

L|nk
UC Model Properties to

Fig. 4-3 System Functional Analysis Workflow and its Support through the Rhapsody SE-Toolkit

Harmony for SE Deskbook | 48 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: System Functional Analysis

4.4.1 Uc1ControlEntry
4.4.1.1 Definition of Model Context

The elaboration of of the use case Uc1ControlEntry will be performed
in a separate Rhapsody project.

Create a Harmony compliant Rhapsody project and
name it Uc1ContolEntry

In the Rhapsody main menu select File > Add to Model As unit
navigate to the SecSys_RA project and
double-klick SecSys RA.rpy

@ In the dialog box select

- UseCaseDiagramsPkg.sbs,
- RequirementsPkg.sbs

Click Ok,

In the imported use case diagram UCD_SecuritySystem
you may Delete from Model the use case Uc2ControlExit.

UCD_SecuritySystem)

Security System

o o

Admin AccessPoint

Imported UCD_SecuritySystem

|

&3

t-J Components
—-J Packages
=50 RequirementsAnalysisPkg
=-C0 Packages
=-£3 RequirementsPkg
¢ B0 Packages
: =157 SecSysRegs
(= Requirements
-2 Stereotypes
i ~«52 fromDoors Harmony
=57 UseCaseDiagramsPkg
=% Actors

[t

. [§ User

‘i Admin

. - Camera

. [AccessPoint
5--[:1 Use Case Diagrams

. 7 UCD_SecuritySystem
E-E Use Cases
=42 UclControlEntry

- Association Ends
[H-Z+ Dependencies

----- £7 FunctionalAnalysisPkg

----- £ DesignSynthesisPkg

----- £ ActorPkg

----- &7 InterfacesPkg

----- &1 TypesPkg

Uc1ConrolEntry-focused Project Structure

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Harmony for SE Deskbook | 49

Case Study: System Functional Analysis

From: UseCaze Scope: UseCaseDiagramsPkg

= = Uc1ControlEntry
5 |[[i Three Attempts On Employee ID Entry . Three Attempts On Employee ID Entry
-‘é [t]] Three Attempts On Biometric Data Entry ", Three Attempts On Biometric Data Entry
g [Disabling User Account " Disabling User Account
g [t 7| Denied Entry Notification "+, Denied Entry Notification
" [7]Out of Date Cards "+ Qut of Date Cards
@ |[L] Authorization of Security Card - Entry "+, Authorization of Security Card - Entry
% |[[1] Two Independent Security Checks " Two Independent Security Checks
g [t]Alarm - Entry " Alarm - Entry
. |[1][Employee ID Card |dentification - Entry . Employee ID Card Identification - Entry
% [t }]Visualization of Security Card Check Status - Entry .. Visualization of Security Card Check Status - Entry
| [t Security Card Information "+, Security Card Information
[t 1] Visualization of Biometric Data Check Status " Visualization of Biometric Data Check Status
[7l Approval of Biometric Data ., Approval of Biometric Data
[t 1 Biometric Scan "+, Biometric Scan
[l7]image Capture " Image Capture

[7] Three Attempts On Employee ID Exit

[£7] Time Limit Violation

[t 7] Denied Exit Notification

[5]Alarm - Exit

[[]Employee ID Card Identification - Exit

[I Wisualization of Security Card Check Status - Exit

[t 7] Security Lockdown

[l i Emergency Exit

[£ 7| Authorization of Security Card - Exit

[7 Entry Time "+ Entry Time

[t Time Between Two Independent Checks " Time Between Two Independent Checks
[i7|Processing User Request " Processing User Request

[t 7] Biometric Data Storage " Biometric Data Storage

[[7] Time Recording

[£ 7] Exit Time

[t]Automatic Securing the Secure Area - Entry ., Automatic Securing the Secure Area - Entry
[[] Automatic Securing the Secure Area - Exit

[t]]Configuration of Entry and Exit Time -, Configuration of Entry and Exit Time

Uc1ControlEntry related System Requirements

Harmony for SE Deskbook | 50 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: System Functional Analysis

A Functional Analysis project structure that complies with the
recommended one outlined in Section 3.3, may be created _
automatically by means of the SE-Toolkit feature Create System t-[0 Components

-0
—I-0 Packages
Model From Use Case. =3 RequirementsAnalysisPkg

Daé

=3 Packages
B%l [Iéequirementstg
Right-click use case Uc1ControlEntry and select - L0 Packages
@ SE-Toolkit / Create System Model From Use Case. . B0 SecSysReqs

=57 UseCaseDiagramsPkg
[=-C3 Use Case Diagrams
L= UCD_SecuritySystem
UCD_SecuritySystem) =0 FunctionalAnalysisPkg
=0 Packages
(@) =-£3 UclControlEntryPkg

(@)
- =2 Blocks
Security System | {7 Uc_UclControlEntry 4@
O -0 Iﬁnternal Block Diagrams
3 — =G5 IBD_UclControlEntry
User m Camera =] D Packages

o ~E£71 UclControlEntryBBScenariosPkg

=57 UclControlEntryExecutionScopePkg
=2 Parts

~[g itsUc_UclControlEntry

. - itsCamera
Admin AccessPoint itsAccessPaoint
itsUser
- itsAdmin
-5 Use Cases
@ Uc1ControlEntry associated actor blocks are moved into the @ E'Eé‘iﬁﬁﬂ,‘t;‘ﬂf:;?
ActorPkg. | = UclControlEntryBlackBoxView
; . -9 Activity
@ IBD_Uc1ControlEntry contains the instances of the actors and "P? Association Ends
. +-z2 Dependencies
the use case block created through the SE-Toolkit feature (no &2 Hyperlinks
links between the parts). 57 DesignSynthesisPkg
EI%I %ctorPkg
- (= Actors
@ _Srys’:ﬁ_melock Uc_Uc1ControlEntry created through the SE F & Camera
oolkit feature. - § AccessPoint
2 --LE: User
@ The use case - incl. its requirements links — is moved into the w Admin
Uc1ControlEntryPkg in the FunctionalAnalysisPkg. Additionally, i InterfacesPkg

the Toolkit feature created an empty Activity Diagram
(Uc1ControlEntryBlackBoxView).

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 51

Case Study: System Functional Analysis

4.4.1.2 Definition of Functional Flow

There is always a discussion whether actor swim lanes should be
shown in an activity diagram. In many cases this may lead to “messy”,
hard to read diagrams. Focus of the activity diagram should be on the
system’s internal functional flow.

A recommended alternative is to capture the interactions of an action
with the environment by means of a SysML Action Pin, stereotyped
ActorPin (e.g. readSecurityCard). In this case the name of the
ActorPin must be the name of the associated actor. The arrow in the
pins shows the direction of the respective link (i.e. In, Out or In/Out).
The creation of actor pins is supported by the SE-Toolkit (right-click on
the relevant action and select Add Actor Pins).

The SE-Toolkit feature Create New Scenario From Activity Diagram
uses the pin information when deriving sequence diagrams from the
activity diagram.

NOTE: The action node resetAlarm — initiated by the Administrator —
was added although there is no respective system requirement. It is
considered a derived requirement. Derived requirements are
stereotyped <<DerivedRequirement>> and stored — temporarily (!) - in
the DerivedRequirementsPkg.

Derived Requirement : AlarmReset in DerivedRequirement: # i)

General |Descripuon Relations | Tags | Propemes| |:
Name: AlarmReset
Stereotype: hd | g 3
Type: Requirement v]
1D
Defined in DerivedRequirementsPkg
Specification:
- - Once the alarm is acknowleged, it shall be rest b
-7 RequirementsAnalysisPkg L d Y
n the Administrator -
[=-C0 Packages
=61 RequirementsPkg < U} | ’
. =0 Packages Locate oK Ad

+-51 SecSysReqs
=51 DerivedReqsPkg
== Requirements
- [l]] «DerivedRequirement» AlarmReset
=-£2 Stereotypes
~«5» DerivedRequirement

Uc1ControIEntryBIackBoxView)

User

[4]
readSecurityCard
Camera
[First Request] «MessageAction»
reqTakeSnapshot
[ScFailCount==3]
flagSecurityCardFailure
[CardStatus=="Valid"]
X r®
User lelse] A
>t Bs

[BsFailCount==3]

authenticateBiometricData)

(ﬂagBiometricScanFailure)

disableUserAccount

logAccountData

(displayAuthenticationstatus)

)\[Au!he nticationStatus==
! J logEntryData

[else]
| AccessPoint
«MessageAction»
Admin reqUnlockAccessPoint
[
" i
Admin .| «MessageAction» |4 ____ X _____ «MessageAction»
reqLockAccessPoint evAccessPointUnlocked
t_Unlocked

AccessPoint |

«MessageAction»
evAccessPointLocked

1}
[+]
O

If an activity diagram contains too many details, some
actions may be placed in a Reference Activity Diagram. Do
not use SubActivity Diagrams because these can contain
actions only for a single swim lane. In the later white-box
activity diagrams the actions may span a number of swim
lanes.

¢

Harmony for SE Deskbook | 52

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: System Functional Analysis

4.4.1.3 Derivation of Black-Box Use Case Scenarios

Use case scenarios are derived from the black-box activity
diagram by means of the SE-Toolkit feature Create New Scenario
From Activity Diagram.

In the activity diagram window right-click and select
SE-Toolkit > Generate Sequence Diagram.

In the ModelingToolbox dialog box tick

Create Messages from Pins and

Create Events.

Hold down Ctrl and select in the black-box
activity diagram a sequence of actions. 1)

In the ModelingToolbox dialog box
click Set Source.

In the ModelingToolbox dialog box click

Uc1ControlEntryBlackBoxView)

®

[ScFailCount==3]

Camera

[First Request] aMessageActions

reqTakeSnapshot

[Card Status=="Valid"]

[else]

[BsFailCount==3] %

User Telse]

LY b g
L scanBiometricData ||
o o &

(ﬂagﬁhﬂetricScanFaihre

jg thenticateBiometricData E

%

F
disabkeUserAccount

?isplﬂym thenfication Status E

logAccountData

Create New Scenario From

Activity Diagram. @3 Modeling Toolbox
Options About

ONCNONONG,

. ActivityDi GE
The created Sequence Diagram A -
is automatically stored in the Chick Sourcs Tl for Detels

Uc1ControlEntryBBScenariosPgk

Create New Scenario Fram
L) Activity Diagram

—Options

[~ Copy Dependencies

[~ Copy Tags

[Copy Descriptions

[¥ Create Messages from Pins
¥ Create Events

® o

Exit Set Destination

(=]

[else] e

black
Uc_Ucl ContralEntry

0 m
evdccessPointLocked
o

)\[Autllenﬁcalion Status==

" N - O 0

‘Authenticated "] logEntryData L
o

0
AccessPoint

:

t_Unlocked

[Use Design Rules:

—Design Rules
¥ Remove Cariage Fetums
" Replace lllzgal Characters With Underscores
@& Remove llegal Characters

[Capitalise First Letters

1 ; . .

) Alternatively select a single action as the source.
The tool will auto-create the sequence until it
reaches a condition connector. The user is then

given the choice of which path to take. Generate SDs | Source |

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Harmony for SE Deskbook | 53

Case Study: System Functional Analysis

BB_Uc1Sc1 Nominal J

:User :Uc_Uc1ControlEntry :AccessPoint :Camera

reqReadSecurityCard()

readSecurityCard()

/\\\\\\\\\\\\

ANARARRARRAAAREEEEEEEEERRRAA S EERRRR AR A SRR RRRAAA AN

reqTakeSnapshot()
validate SecurityCard(CardStatus)

N

displayCardStatus(CardStatus)
t Bs

<Card3tatus=="Va|id" >

scanBiometricData()

reqScanBiometricData()

authenticateBiometricData(AuthentjgationStatus)

= AARFAEAAAAAAAAAAAAAAA AN AN

AL ERARR AR AR EEE ARG RRRNR AN NS RRANNNNNNANNNNN

displayAuthenticationStatus(AuthenficationStatus)
’
Z
AuthenticationStatus== %
"Authenticated" 2
logEntryData() Z
Z
reqUnlockAccessPoint() \/
t_Unlocked evAccessPoi ntUnIocked(f;
7
@ reqLockAccessPoint() \%
(evAccessPointLockedﬂ%
Z
7
7
Z
Z
Z
7
Z
i 7

Derived Use Case Scenario BB_Uc1Sc1 Nominal

Harmony for SE Deskbook | 54 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: System Functional Analysis

Activity View Consistency Check

The consistency between actions of the black-box Activity Diagram
and the operations in the derived use case scenarios may be checked
by means of the of the SE-Toolkit feature Perform Activity View
Consistency Check.

For the selected Activity View the feature checks whether

e Each action on the activity diagram appears on at least one of the
sequence diagrams referenced by the Activity View

e Each operation on the referenced sequence diagrams appears at
least once on the activity diagram

Right-click Uc1_ControlEntryBlackBoxView > Activity and select
SE-Toolkit > Perform Activity View Consistency Check.

-51 UclControlEntryPkg
=

2 Blocks
| £ | Activity View Consistency Check | =R 2 | = Eugc [l)’l gg‘t’,’;};?E”t”
e | I R =4 logEntryData()
Options readSecurityCard()
- - - scanBiometricData()
| Messages with no Corresponding Action] authenticateBiometricData()
for ; 4 ; displayAuthenticationStatus()
bt J Actions with no Corresponding Message L displayCardStatus()
----- = validateSecurityCard()

Name L EP reqReadSecurityCard()
flagBiometricScanFailo.s |} & regScanBiometricData()
! | | [I S EP evAccessPointUnlocked()

e Lla:m. | N I S EP evAccessPointLocked()
flagSecurityCardFailure [(3 Internal Block Diagrams
alarm =20 Packages
logAccountData E| EI I%CEL;CO ntrolEnE)rvBBScenariostq

: equence Diagrams
L t L 10 Ucl_Scl Nominal
E':I UclControlEntryExecutionScopePkg

0 : -2 Use Cases

Show Corrected Name | Filter 2o UclControlEntry

Q == Actl\nty Views

--@ Activity
B- D Sequences
""" 01 Ucl_Sc1 Nominal
&1 Association Ends
t-(*+ Dependencies
i-# Hyperlinks

. J @ . EHF UclControlEntryBlackBoxView

The screenshot above shows the result of the consistency check after
the first use case scenario was generated. It lists those operations
that have not yet been addressed. They will be captured in the
following exception scenarios.

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 55

Case Study: System Functional Analysis

BB_Uc1Sc2 Exception CardReaderEntry) BB_Uc1Sc3 Exception BiometricScarﬂ

r :Uc_Uc1ControlEntry :Admin :User :Uc_Uc1ControlEntry :Admin

e
8

reqScanBiometricData()

reqReadSecurityCard() scanBiometricData()

readSecurityCard()
authenticateBiometricData(AuthenticationStatus)

il

validateSecurityCard(CardStatus)
displayAuthenticationStatus(AuthenticationStatus)

AuthenticationStatus==
"Not Authenticated"

flagBiometricScanFailure(BsFailCount)

< BSFailCount=3 >

disableUserAccount()

2

ANARARRRRRARARREEARA AR ARG SAE RN R RRR RN A SRR RN RN NANRNNNNNNNY

displayCardStatus(CardStatus)

<CardStatus=="Not valid" >

flagSecurityCardFailure(ScFailCount)

< ScFailCount=3 >

8

il

A RN
AARARRRRRRARARRRRARA RN RN RN RRNRARARANNNNNNANNN

\\<\\\

disableUserAccount() logAccountData()

logAccountData() alarm()

alarm() reqProcessAlert(AlertType)

(reqResetAIarm(f
reqProcessAlert(AlertType) tAlarm()
'ge reqResetAIarm(f
setAlarm() 7
2
7
7
7
7
7
7
7
7
7
7
7
Derived Use Case Scenario BB_Uc1Sc2 Exception CardReaderEntry Derived Use Case Scenario BB_Uc1Sc3 Exception BiometricScan

Harmony for SE Deskbook | 56 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: System Functional Analysis

4.4.1.4 Definition of Ports and Interfaces

Right-click the package
Uc1_ControlEntry_BBScenarios and select
SE-Toolkit > Create Ports And Interfaces.

Rhapsody by means of the SE-Toolkit feature Create Ports And
Interfaces. Pre-condition: All messages and operations in the
sequence diagrams are realized.

The definition of ports and associated interfaces is automated in @

Connect ports either manually or right-click in the IBD

Naming convention for ports: p<Target Name> @ and select SE-Toolkit > Connect Ports

Interface names are referenced to the sender port.
Naming convention: i< Sender >_< Receiver >

IBD_Uc1_ControlEntry E—J%l gnctionalAnalysistg
Packages
=8 El UchontroIEntryPkg

1 itsUc Uc1ControlEntry
iUser_Uc_Uc1ControlEntry iUc_Uc1ControlEntry_Camera

———()—{] PUser pCamera [}—(——

=12 Blocks

. -3 Uc_UclControlEntry

l [Internal Block Diagrams

EI [Packages

— =53 UclControlEntryBBScenariosPkg

. -0 Seguence Diagrams

-1 Ucl_Scl Nominal

i 0.0 Ucl_Sc2 Exception CardReaderEntry
o 1 Ucl_SC3 Exception BiometricScan
A #-57 UclControlEntryExecutionScopePkg
-2 Use Cases

iAdmin_Uc_U¢1ControlEntry iUc_Uc1CortrolEntry_AccessPoint

7] pAdmin pAccessPoint [

iUc_Uc1ControJEntry_Admin iA oirft_Uc_Uc1ControlEntry -E3 DesignSynthesisPkg
-5 ActorPkag
=] Interfaoestg
1 itsUser o - % Events
iUser_Uc_Uc1CdntrolEntry ! ItsCamera = Packages

—t- iUc_Uc1ControlBntry_Camera B | Uc1 BB_InterfacesPkg
pUc_Uc1ControlEntry [IJ—(— 1—O_[I] pUc_Uc1ControlEntry =5 -2 Interfaces

e iUser_Uc_UclControlEntry
#-H iUe_UclControlEntry_AccessPoint

iAdmin_Uc_Uc1ControlEntry

1 itsAdmin iUc_Uc1ControlEntry_AccessPoint " " Q iUe_UclControlEntry_Camera
! HUsAccessPolnt E iUc_Uc1ControlEntry_Admin
pUc_Uc1ControlEntry pUc_Uc1ControlEntry H iAccessPoint_Uc_UclControlEntry

- iAdmin_Uc UclControlEntry

iUc_Uc1ControlEntry_Admin iAccessPoint_Uc_Uc1ControlEntry

NOTE: The interface definitions and
associated event definitions are allocated in
the InterfacesPkg.

Internal Block Diagram IBD_Uc1_ControlEntry with Ports and Interfaces

For readability reasons it is recommended not to show the interface
names in the diagram. Deselect in each block the Display Option
Show Port Interfaces.

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 57

Case Study: System Functional Analysis

ProcessingSecurityCardData (/;)

I IScFailCount=1;

4.4.1.5 Definition of Use Case Behavior

ValidatingSecurityCardData @')

. . . validateSecurityCard(CardStatus); displayCardStatus(CardStatus);
The state-based behavior of the use case block is described by a 7y

Statechart Diagram. The use case Statechart Diagram represents the [else] Cardvalid
aggregate of all flows in the black-box Activity Diagram and the
associated Sequence Diagrams. Guidelines how to derive a
Statechart Diagram from the information captured in the Activity

CardStatus=="Not Valid"
reqReadSecurityCard/ [!

readSecurityCard(); SecCardFailure (’é}

flagSecurityCardFailure(ScFailCount);

Diagram and Sequence Diagrams are documented in the Appendix.

Uc1ControlEntryCtrl

[WaitForEntryRequest]‘_-
t

reqReadSecurityCard/
readSecurityCard();

| reqTakeSnapshot to pCamera >

y 1
[ProcessingSecurityCardData Q

Cardvalid Fail3Times ©3 J
2 IdisableUserAccount();
f ProcessingBiometricData logAccountData();
alarm();
L Authenticated BsTimeout Failed3Times % J
llogEntryData();

IdisableUserAccount();

logAccountData();

alarm();

UnlockingAndLockingAccessPoint
| 9 9 | reqProcessAlert("User Access Disabled") to pAdmin >

= |
3 v

[WaitForResetAlarm]

t)
reqResetAlarm/
resetAlarm();

evAccessPointLocked

[WaitForEntryRequest]‘ [else] Fail3Times
(J [ScFailCount <3] ‘ :T

ProcessingBiometricData m

N—
I /BsFailCount=0;

tm(t_Bs)

[WaitForBiometricScanRequest 1'
reqScanBiometricData/
scanBiometricData();

*®

BsTimeout

AuthenticatingBiometricData l'é)

authenticateBiometricData(AuthenticationStatus); displayAuthenticationStatus(AuthenticationStatus);

[else] Authenticated

[Authenticati Authenti d"]
reqScanBiometricData/ N
scanBiometricData(); (

BiometricScanFailure &)

flagBiometricScanFailure(BsFailCount);

BsFailCount=3
[waitForBiometricScanRequest L_‘ [BsFailCount=3]
C J [else] Failed3Times

allows the reuse of behavior-patterns in later phases (e.g.
Use Case Realization).

S‘Q A statechart should be hierarchically structured. This
‘

(UnlockingAndLockingAccessPoint (,a
| reqUnlockAccessPoint to pAccessPoint >
[UnlockingAccessPoint]
C J
l evAccessPointUnlocked
[AccessPointUnlocked]
l tm(t_Unlocked)
| reqLockAccessPoint to pAccessPoint >
[LockingAccessPoint]
. J

Harmony for SE Deskbook | 58

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: System Functional Analysis

In order to execute the use case model closed-loop, also the behavior Alternatively, the actor behavior may be captured in a more detailed
of the actors has to be captured. The Rhapsody SE-Toolkit provides Statechart Diagram:

a feature that automatically generates the actor behavior based on the

actor’s provided/required interface information:

@ In the use case Internal Block Diagram right-click the

In the use case Internal Block Diagram right-click the User block and AccessPoint block and select Class / New Statechart.

select SE-Toolkit / Create Test Bench.

This toolkit feature captures the User behavior in one state (Active)
using MOORE syntax (= action in state). and includes already the
capability to run model execution via Webify.

@ Capture manually the actor behavior in a state machine.

Repeat the step for the actor blocks Admin and Camera. , AccessPointCtrl

Active @
r

@ send_reqReadSecurityCardThruPortpUc_Uc1ControlEntry/...OPORT(pUc_Uc1ControlEntry)->GEN({reqRead SecurityCard);)
@) send_reqScanBiometricDataThruPortpUc_Uc1ControlEntry/...OPORT(pUc_Uc1ControlEntry)-=GEN(req ScanBiometricData); <

IBD_Uc1_ControlEntry)

1 itsUser

pUc_Uc1ControlEntry [lj—[] pUser pCamera []—[lj pUc_Uc1ControlEntry ,
d

1 itsAdmin | 1 itsAccessPoint |

pUc_Uc1ControlEntry I:I]—El:l pAdmin pAccessPoint [lj—[lj pUc_Uc1ControlEntry

1 itsUc_Uc1ControlEntry J 1 itsCamera = ,

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 59

Case Study: System Functional Analysis

4.4.1.6 Use Case Model Verification

The Uc1ControlEntry model is verified through model execution on the
basis of the captured use case scenarios. The correctness and
completeness analysis is based on the visual inspection of the model
behavior.

The Rhapsody tool provides two ways to visualize model behavior:

e Visualization of the state-based behavior through animation of
respective statecharts

e Visualization of message sequences by means of automatically
generated sequence diagrams

Uc1ControlEntryCtrl

]

WaitForEntryRequest

reqReadSecurityCard/
readSecurityCard();

I reqTakeSnapshot to pCamera >

ProcessingSecurityCardData

CardValid Fail3Times &

9 T e

/ "
(;
ProcessingBiometricData logAccountData();
alarm();
Authenticated BsTimeout Failed3Times 3
NogEntryData();

IdisableUserAccount();
logAccountData();
alarm();

1 4 A 5

| reqProcessAlert("User Access Disabled") to pAdmin >

[WaitForResetAlarm]

reqResetAlarm/
resetAlarm();
evAccessPointLocked

Animated Statechart Diagram (Uc1ControlEntryCtrl)

:User :Uc_Uc1ControlEntry :AccessPoint :Camera
Z
reqReadSecurityCard() %
Z
readSecurityCard() %
Z
reqTakeSnapshot() %

ANAARRRRARARARARRRRARRRRRRRR AR RRRARRRRRRARER AR RRARAR AR RRRARARR R RRRAR AR ARRARAR AR RRRARARRRARRNNRNNNNN

ecurityCard(CardStatus//= Valid)
%

displayCardStatus(CardStatus<=Xalid)

7

7

reqScanBiometricData() %

7

scanBiometricData() 2

7
authenticateBiometricData(Auth/ ticationStatus = Authenficated)

7
displayAuthenticationStatus(AutbfenticationStatus = Authénticated)

7

7

logEntryData() 2

7

reqUnlockAccessPoint() 2

% tm(1000)
. /:<_—|

evAccessPointUnlocked() %

7

m(5000) 2

Z

reqLockAccessPoint() %

7

N\

tm(1000)

evAccessPointLocked()

1

ANNNNNNNN

ANAARARRRER AR EERERRGERRE GERR RS ERRR S ERR RS RRRA AR RS A AR R SRRA AR A RN A SNRNAARRNNNR

Animated Sequence Diagram BB_Uc1Sc1 Nominal

Harmony for SE Deskbook | 60

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: System Functional Analysis

The analysis via Sequence Diagrams is supported by the Rhapsody

Sequence Diagram Compare feature. This feature enables to ‘gr;:;":_' 2212? Description
perform comparisons between two Sequence Diagrams, e.g. one S = " =
capturing the sequence of a required scenario and the other showing P_reke" P_”: Msg Macnes In fh s
the recorded scenario. The differences between the diagrams are G'” Pf”k Msg:m'ds_:;"g '"t o e't s
shown color-coded. This feature may also be used to compare two O'ee" O'” Msg as d e;e”d:g”mteps'ﬁ t:c’ t;’r s
runs for regression testing. range range sg arrives at a different time |n- e other
Gray Gray Msg was excluded from comparison
User Uc_Uc] ContralEntry AccessPoint Camera User | Uc_UclControlEntry I :AccessPoint | :Camera
:User :Uc_Uc1ContrelEntry :AccessPoint :Camera i :User :Uc_Uc1ControlEntry :AccessPoint :Camera i
Z 7z
Z 7
reqRead SecurityCard() w % reqRead SecurityCard() é
“ 7
%
read SecurityCard() 2 read SecurityCard() é
“ 7
%
quakeSnapshot[) \2 reqTake Snapshot{) é
‘v_a—lildate SecurityCard(Card Status) /% urityCard(Card Status = galid)
%
%

displayCard Status{Card Status)

t Bs
< Card Status==")/alid" > =
reqScanBiometricData() | 57 reqScanBiometricDataf) 1

scanBiometricData()

scanBiometricData()

authenticateBiometricData(Authenti¢ation Status)

ication Status) ication Status =

S TR N NN

SEAN : .

A

d isﬁl ayAuthentication Status{Authe thenticated)

<“ hentication Status=="Authenti "'>
IfEntryDala[}

reqUnlockAccessPoint])

isTayﬂuthemicalion Status{Authe

ﬂinlr}fData{}

reqUnlockAccessPoint()

lr
SSSNGANENERRRANN \\\Q SNSNCSURRRN RN

I—U"IOCkeata\-'.ﬂccessPointUnIocIﬁecl[J evAccessPointUnlocked

\J

Recorded reqLockAccessPoint()
Sequence

Required reqipckAccessPoint()
Sequence

e

N

evAccessPointLocked() evAccessPointLocked()

S

R D D
S S S D D D =I_\\\\\\\\\\\\\\\\ T R R

I

R

A

< 11l | P I

-

Sequence Diagram Compare: Scenario BB_Uc1Sc1 Nominal

NOTE: Timeout Arrows were intentionally deselected via Preference Settings for Animated Sequence Diagrams

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 61

Case Study: System Functional Analysis

4.4.1.7 Linking Model Properties to Requirements

In order to assure that all Uc1 allocated system functional and
performance requirements are considered, traceability links from the
Uc1 block properties to the system requirements are established using
a satisfy dependency. There are two ways to implement the
<<satisfy>> dependency

- directly in the browser using the SE-Toolkit feature
Create Dependency, or
- graphically, in a Requirement Diagram.

It is recommended to start with the SE-Toolkit feature Create
Dependency. If considered necessary — e.g. for discussions or
documentation purposes - the dependencies may then be visualized in
a Requirements Diagram.

[0 RequirementsAnalysisPkg
=0 Packages
=53 RequirementsPkg
-0 Packages
=-f7 SecSysSystemReqs
=-¢= Reguirements
EN] - fromDoors Harmonys Three Attempts On Employee ID Ent
[[] «fromDoors Harmaony= Three Attempts On Biometric Data Entry
[t1] «fromDaoors Harmonys Disabling User Account
[7 «fromDoors Harmony» Denied Entry Notification
bl <fromDoors Harmonv= Qut of Date Cards — Entry
[t1] «fromDaoors Harmonys Authorization of Security Card — Entry
[[Remsfmriton® o v L arpaqpuss-Tuen Insnes-=dant \Ti‘h’-mﬂx\ .

N A o e

T5 FiinctishalAnalysisPkg o e
=-CJ Packages
=63 Uc1ControIEntryPkg
=2 Blocks
=+ Ue_UclControlEntry
bﬁ Attributes
F- % Generalizations
SR
@

mll

Operations
W readSecurityCard()
val|dateSecuntvCard(OMStnnq CardStatus)
| B Satisfactions
-¥, Authorization of Security Card - Entry
=%, Out of Date Cards - Entry
displayCardStatus{OMString CardStatus)
ﬂaqSecuerCardFallure(mt ScFalICou

i

s, .
e

@_ SetSource

OO0 ©®© 06

In the Tools Menu select

Tools > SE-Toolkit > Modeling Toolbox
In the dialog box select Dependencies.
Select Profile: SysML

Select Stereotype: satisfy.

In the system block Uc_Uc1ControlEntry
select the property(s) you want to link to a
system requirement.

In the Modeling Toolbox dialog box
click Set Source.

In the SystemRequirementsPkg
select the relevant system requirement(s).

In the ModelingToolbox dialog box
click Set Destination.

In the Modeling Toolbox dialog box
click Create Dependency with Stereotype

% Modeling Toolbox
Options About

| SetDastination

Exit |

Operation Destination Metaclass

validateSecurityCard hultiple fems Selected
Check Dest Tab for Details

Create Basic Dependency

Create Dependency with Stereotype:

Profile

[SysmL ~]
Stereotype:
Isalisfy LI

General Dependencies | Other | Generate SDs | Dest|

Harmony for SE Deskbook | 62

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: System Functional Analysis

Visualization of the Dependencies in a Requirements Diagram

In the RequirementsPkg create a Requirements Diagram Move the associated system requirements from the
RD_Uc1BlockLinksToSysRegs. SystemRequirementsPkg into the diagram.

Move the operations and attributes from the @ In the Tools Menu select Layout > Complete Relations > All
Uc_Uc1ControlEntry block into the diagram.

RD_Uc1BlockLinksToSysR)

«Requirement»

Primitive O ti n PO «Primitive Operation»
«rrimitive Dperafion» Denied Entry Notification - logEntryData
logAccountData():void | > «satisfy»
«safisfy» |p = sysa
«Primitive Operation» «Requirement» «Attribute»
flagBiometricScanFailure «satisfy» ihree/ittemptsloniBiometriciDatalEntry «satisfy» BsFailCount
ID = SYS2
Primitive Operati «Requirements «Attribute»
«Primitive Operation»
flagSecurityCardFailure —————> [[hresiAttemptslOn|EmployseliDiEntry N ScFailCount
«satisfy» ID = SYS1 «satisfy»
«Requirement»
Authorization of Security Card - Entry
«satisfy»
ID = SYS6
«Primitive Operation» «Requirement»
lidateSecurityCard Security Card Information
«satisfy» ID = SYS11

«Requirement»
Out of Date Cards - Entry

«satisfy»
ID = SYS5
- «Requirement»
«At:";l:e» Time Bet 1 Two Independant Checks
«satisfy» D = SYS27
«Attribute» «Requiren:lent»
t_Unlocked W Entry Time
ID = SYS26

Uc1ControlEntry Model Properties Mapped to System Requirements (Excerpt)

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 63

Case Study: System Functional Analysis

4.4.2 Uc2ControlEXxit

4.4.2.1 Definition of Model Context

The elaboration of of the use case Uc2ControlExit will be performed in
a separate Rhapsody project Uc2ControlExit. The modeling starts
with the import of the relevant information from the Rhapsody project
SecSys_RA into the new project (ref. Section 4.4.1.1).

Add to Model as Unit the packages

- UseCaseDiagramsPkg.sbs,
- RequirementsPkg.sbs

@ In the imported use case diagram UCD_SecuritySystem you
may Delete from Model the the use case Uc1ControlEntry and
the actor Camera.

UCD_SecuritySystem J
o
Security System
User
o o
Uc2Control Exit
Admin A Point

@ Right-click use case Uc2Control Exit and select
SE-Toolkit/ Create System Model From Use Case.

4.4.2.2 Definition of Functional Flow

Similar to the steps outlined in Section 4.4.1.2 the functional flow of
the wuse case is elaborated in the Activity Diagram
Uc2ControlExitBlackBoxView that was created by the toolkit feature
Create System Model From Use Case.

Uc2ControlExitBlackBoxView)

read SecurityCard

G:heckForTimeLimitVioIalions)

Admin 1 [TimeLimitFlag==true]
validate SecurityCard [¥] L
«MessageActions
rocesler

displayCard Status

[Card Status==Valid]

“.-I" logExitData

AccessPoint

P " b
flagSecurityCardFailure
(9 e j «Messagedction»
reqUnlockAccessPoint

AccessPoint AccessPoint

k
«MessageAction»
evAccessPointUnlocked

t_Unlocked
AccessPoint
| 3

wMessageAction»
1 PointLocked

[+]
resetAlarm

Uc2ControlExit Functional Flow (Black-Box View)

Harmony for SE Deskbook | 64

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: System Functional Analysis

4.4.2.3 Derivation of Black-Box Use Case Scenarios

The combined nominal and exception sequences are created from the BB_Uc2Sc1 Nominal and Exception)

black-box activity diagram by means of the SE-Toolkit feature Create User “Ue_Uc2ControlExit “Admin Acee =Fa
New Scenario From Activity Diagram (ref. Section4.4.1.3). The "
toolkit automatically stores the derived Sequence Diagram in the —
UcZControIExitBBScenariostg. [100p J checkForTimeLimitViolations(TimeLimitFlag) f
“
z
[opt] [Time Limit Status==true] “
z
regProcessAlertAlertType] 5 7
I _Z
regRead SecurityCardf) 3

read SecurityCard(}

wvalidate SecurityCard[Card Status)

displayCard Status(Card Status)

) \\\\\\\\\\\\\\\\T

\l\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\l\\\\\\\\\\\\\\\

é

“

.

o

.

o

i

o

-

-

v

é

-

%

b

o

i

o

-

-

v

-

“

-

“

.

;

2 alt [Card Status=="Hot Valid"]

g flag SecurityCardFailure|ScFailCount)

-

“

-

“ { ScFailcount=2

; al ul

; reqProcessAlertAlertType) [

% alarm{} -

“ “

/ 7

% (reqResetAlarm{}

g resethlarm{} é

7 =7

2 [Card Status=="Valid"] ; o

2 logExitDataf} g 2

Z Z Z

? regUnlockAccessPoint]) % -\._/

é t Unlocked evAccessPointUnloc) 7

7 -

N AR

; reqlockAccessPoint() ::;

% evAccessPointLoc -

z & S Sa——

-

< “

. Z 7 Z

NOTE: The Interaction Ocurences / Operand Separators as well as Z Z 7
the Condition Mark were added manually after the generation of the 2 é f

v s i

Sequence Diagram

Derived Use Case Scenario BB_Uc2Sc1 Nominal and Exception

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 65

Case Study: System Functional Analysis

Definition of Ports and Interfaces

SE-Toolkit > Create Ports And Interfaces.

Connect ports either manually or right-click in the IBD

4.4.2.4
Right-click the package
Uc2_ControlExit BBScenarios and select
@ and select SE-Toolkit > Connect Ports

AccessPointCtrl

tm(1000)

evAccessPointUnlocked to pUc_Uc2Control Exit >

IBD_Uc2ControlExit J
1 itsUc Uc2ControlExit 1 itsAccessPoint
pAccessPoint L pUc_Uc2ControlExit
1 itsUser I

pUc_Uc2ControlExit [i]—[] pUser 1 itsAdmin

pAdmin [I]—[I] pUc_Uc2ControlExit

IBD of Use Case Model Uc2ControlExit with
generated Ports and Interfaces

4.4.2.5 Definition of Use Case Behavior

The behavior of the actors User and AccessPoint are generated by
means of the SE-Tookit feature Create Test Bench (ref. Section
4.4.1.5.). The behavior of the actor Accesspoint is manually captured
in a Statechart Diagram.

Note the reuse of behavior patterns in the Statechart Diagram of the
use case block. The system states ProcessingSecurityCard Data and
UnlockingAndLockingAccessPoint are identical to the ones used in the
use case block Uc_Uc1ControlEntry.

State-based Behavior of Actor AccessPoint

| Uc2ControlExitCtrl |

[WaitForExitRequest]‘_-

L I

reqReadSecurityCard/
! read SecurityCard();

Processing SecurityCardData]
CardValid Fail3Times o3 |

logExitData(); falarm();

| reqProcessAlert{"Exit Failure”) to pAdmin >

[UnlockingAndLockingAccessPoint ‘
[WaitForResetAlarm]
l 2 []

evAccessPointLocked reqResetAlarm/
resetAlarm();

&

CheckingForTimelimitViolations =

& checkForTimeLimitViolations{TimeLimitFlag); :l tm(t_Update)

A
[TimeLimitFlag=false; [TimeLimitFlag==true]

X
reqProcessAlert{"TimeLimitViolation") to pAdmin >

.

A

State-based Behavior of Use Case Block Uc_Uc2ControlExit

Harmony for SE Deskbook | 66

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: System Functional Analysis

4.4.2.6 Use Case Model Verification

The Uc2ControlExit model is verified through model execution on the
basis of the captured use case scenarios. The correctness and
completeness analysis is based on the visual inspection of the model
behavior.

&
8

:Uc_Uc2ControlExit :Admin :AccessPoint

NN

checkForTimeLimitViolations{TimeLimitFlag = 1)~

I Tc2Controlbxitc |

WaitForExitRequest

reqRead SecurityCard/
read SecurityCard();

reqProcessAlert{AlertType = TimeLimitViolation)

checkForTimetimit\/iolations{TimeLimitFlag = 0)

reqRead SecurityCard()

Proceﬁsmg SecurityCardData |

CardValid Fail3Times o3 I
lNogExitData(); T falarm():
reqProceﬁsAlerl{'Exit Failure”) to pAdmin >

read SecurityCard()

|

validate SecurityCard(Card Status = Valid)

|

dlsTay{:ard Status(Card Status = Valid)

T D D D I I

x\\\\\\\\\\\\\i\E\\/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ SUIIIIIII I

T T R D D S s

UnlockingAndLockingAccessPoint -
TogexitData
evAccessPointLocked :zg:j\slgt:r:a;rm; reqUnlockAccessPoint()
A 7 tm(1000)
A /' Unlocked
Ch gForTi V 2] ev ccemé)lnt nlocked()
 checkForTimeLimitViolations(TimeLimitFlag); tmit_Update) Lin(500) é
“
“
TimeLimitFlag=false; [TimeLimitFlag==true] reqLockAccessPoint() é
reqProcessAlert{"TimeLimitViolation") to pAdmin
> Z 77 tm(100)
7 o
o) evAccegsPointLocked() Z
Verification of the Use Case Model Uc2ControlExit 7 7
through Model Execution Z Z
Z Z
A “
A “
“ “
A “
o “
Z Z
7 “

4.4.2.7 Linking Model Properties to Requirements

Animated Sequence Diagram BB_Uc2Sc2 Nominal

In order to assure that all Uc2 allocated functional and performance
requirements are considered, traceability links from the Uc2 block
properties to the system requirements are established using a satisfy
dependency (ref. Section 4.4.1.7).

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 67

Case Study: Design Synthesis

4.5 Design Synthesis

4.5.1 Architectural Analysis (Trade-Off Analysis) !

‘ Define ’
Key System Functions

The focus of the Architectural Analysis is on the determination of a
system decomposition that fulfils best the required functionality

identified in the system functional analysis phase. Fig. 4-4 details the v

architectural analysis workflow and lists its support through the Build Weighted Objectives Table

Rhapsody SE-Toolkit in the respective phases. I

As outlined in Section 4.1 Architectural Analysis is performed in a Define

separate project SecSys_AA. The elaborated system architecture Solution Candidates

captured in the Block Definition Diagram BDD_SecuritySystem and l

IBD_SecuritySystem in the ArchitecturalDesignPkg, will be common in Define

all subsequent realized use case models even when only a subset of Assessment Criteria

the system blocks will be addressed in the individual use case $

realization. Assign SE-Toolkit Feature:
Weights to Criteria Copy MOEs to Children

Y

Define Utility Curve
for each Criterion

'

Assign MoEs
to Solution Candidate

. . SE-Toolkit Feature:
Determine Solution Perform Trade Analysis

¥
[Next Key System Function]
[else]

Merge Solutions to ’
Form System Architecture

[
ArchitecturalDesignPkg

Fig. 4-4 Workflow in the Architectural Analysis Phase and
its Support through the Rhapsody SE-Toolkit

Harmony for SE Deskbook | 68 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Design Synthesis

4.5.1.1 Definition of Key System Functions

The objective of this stage is to group the system functions together in Step2: Define and apply first cut design criteria

such a way that each group can be realized by a physical component. Typically, the first cut design criterion is to decide which of the key
functions would be realized as a COTS component or developed
internally. In this case study it was decided that the functions

Step1: Group related system functions into key system functions ReadCardInformation and CaptureBiometricData would be bought and

the function ControlSecSys developed internally.

Due to the number of ways in which the key function

CaptureBiometricData can be realized, it was decided to carry out a

Trade Study. It was not considered necessary for the key function

The following 3 key system functions were identified through analysis
of the use case black-box activity diagrams:

ReadCardInfomation: .
. ReadCardInformation.

e readSecurityCard
. d IsplayCard Status Uc2ControlExitBlackBoxView)
e alarm
e resetAlarm IS EeTriyCard]

. . Uc1 Con(rolEntryBlackBoxViev _ _ Admin l [TimeLimitStatus==true]
CaptureBiometricData: IEH -
e scanBiometricData Camera

displayCardStatus

[First Request] «MessageAction»

" reqTakeSnapshot

e authenticateBiometricData
e displayAuthenticationStatus

[else] [CardStatus==Valid]

logExitData

[ScFailCount==3] d AssPoint

ControlSecSys: fagSecurityCardrailure
: .
e validateSecurityCard -
e flagSecurityCardFailure (SeraiCount<al
o flagBiometricCheckFailure TcardStatus=Valic] z N eiccessPointinlacked
e disableUserAccount X »® ol
t Bs _«Mes: eAction»
° |OgACCOU ntData [else] scanBiometricData ‘ e‘”‘“””“l:""“-""‘e"
e logEntryData -
o |Og ExitData [BeFalGounc==a] authenticateBiometricData
e checkForTimelimitViolations flagBiometricScanFailure
° u n | OCkACCGS Poi nt disableUserAccount displayAuthenticationStatus
e JockAccessPoint [AuthenticationStatus==
feteel AccessPoint
v [l
Admin
AccessPoint AccessPoint

«MessageAction»

_reqpmmssAlm
Admin 1 i L, ;Z
et reoctacesoit N\ r—

AccessPoint i

«MessageAction»

evAccessPointLocked

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 69

Case Study: Design Synthesis

4.5.1.2 Definition of Candidate Solutions

The objective of this phase is to identify possible solutions for a
chosen key system function.

Step1: Identify solutions to the chosen key system function

In this case study the chosen key function is CaptureBiometricData.
Possible solutions are:

e Facial Recognition
e Fingerprint Scanner
e Optical Scanner (examining iris or retina)

Step2: Select candidate solutions for further analysis

Facial recognition systems are at present not very reliable technology,
also they are very expensive to install and maintain.

Two practical candidate solutions remain that will be carried forward
for further analysis i.e.

e Fingerprint Scanner
e Optical Scanner (Cornea or Iris Scanner)

This information can now be entered into the model.

@ In the DesignSynthesisPkg create a package
ArchitecturalAnalysisPkg

@ In the ArchitecturalAnalysisPkg create a package
TradeStudyAnalysisPkg

@ In the TradeStudyAnalysisPkg create a package
BiometricScanTradeStudy

@ In the BiometricScanTradeStudy package create a Block
Definition Diagram called BDD_CaptureBiometricDataOptions

In the BiometricScanTradeStudy create the following blocks
- Capture Biometric Data

- Optical Scanner

- FingerprintScanner

Move the blocks onto BDD_ CaptureBiometricDataOptions and
join them together using inheritance associations.

In the block CaptureBiometricData manually add the
Uc1ControlEntry operations that are associated with the key
system function CaptureBiometricData. This shows what the
OpticalScanner and FingerprintScanner should be capable of.

&3 ArchitecturalAnalysisPkg
=-1 Packages
=-f3 TradeStudyAnalysisPkg

=-1 Packages : :
=-f3 BiometricScanTradeStudy
=-{1 Block Definition Diagrams
. gk BDD_CaptureBiometricDataOption
=B blocks

=8 CaptureBiometricData

~ E-@ Operations

@5 authenticateBiometricData(OMString AuthenticationStatus)
@5 displayAuthenticationStatus(OMString AuthenticationStatus)

@4 ScanBiometricData()

- Optical Scanner

-8 FingerprintScanner

BDD_CaptureBiometricDataOption)

ablocks
CaptureBiometricData

& authenticateBiometricData(AuthenticationStatus:OMString)void
& displayAuthenticationStatus(AuthenticationStatus:OMString):void
&d ScanBiometricData() void

I [

ablocks ablocks

FingerprintScanner @ Optical Scanner

Harmony for SE Deskbook | 70

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Design Synthesis

4.5.1.3 Definition of Assessment Criteria

Assessment criteria typically are based upon customer constraints, B ArchitecturalnalysisPkg
required performance characteristics, and/or cost. E-1 Packages)
=-£3 TradeStudyAnalysisPkg
oo o =+ Packages
Assessment criteria are normally subjective but can also be very E---E_:lgometﬁcScan_T_radestudv
specific. A subjective target could be low cost. A specific target could e e DataOption

be a precise measure of accuracy i.e. +/- 0.1 mm. In this case study =8 blocks

. . . -8 CaptureBiometricData
the assessment criteria are a mixture of both. - B Attributes
-® «moe» Accuracy
The assessment criteria and the associated classification in this case E «moe» PurchaseCost
«moe» InstallationCost
study are: ‘B «moe» ManitenanceCost
‘B «moe» Security
=@ Operations
o Accuracy &l authenticateBiometricData(OMString AuthenticationStatus)
. Purchase : & displayAuthenticationStatus(OMString AuthenticationStatus)
i @ ScanBiometricData()
e Installation and 7@ Optical Scanner
e Maintenance Cost L TngerprintScanner

The assessment criteria are captured in the model by adding to the BDD_CaptureBiometricDataOption)
block CaptureBiometricData for each assessment criterion a —

. . «DIoCK»
respective attribute, stereotyped <<moe>>. CaptureBiometricData

H «moe» Accuracyint

B «moe» PurchaseCost:int

H «moe» InstallationCostint

H «moe» ManitenanceCost:int
B «moe» Security:int

&l authenticateBiometricData(Authenti cationStatus:OMString):void
& displayAuthenticationStatus(AuthenticationStatus:OMString)void
& ScanBiometricData():void

| I

ablocks ablocks
FingerprintScanner Optical Scanner

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 71

Case Study: Design Synthesis

[E5 BiometricScanTradeStudy

=1 Block Definition Diagrams

— — . _uPy BDD_CaptureBiometricDataOption
Accuracyint E‘@ blocks

=8 CaptureBiometricData

4.5.1.4 Assigning Weights to Assessment Criteria

Not all assessment criteria are equal. Some are more important than

others. Assessment criteria are weighted according to their relative & weightRhpString=0.3 E"'E._‘éttiﬁg Accuracy
importance to the overall solution. The weighting factors are B® Tas
normalized to add up to 1.0. PurchaseCostint - weight
- «moe» PurchaseCost
o B «moe» InstalationCost

& weight:RhpString=0.2 B «moe» ManitenanceCost
. b B «moe» Security
Step 1: Rank the assessment criteria amoss «-B Operations

InstallationCostint -
=8 Optical Scanner
= =-H Attributes
& weight:RhpString=0.15 :

== «moes Accuracy

The ranking for the assessment criteria in this case study is

1 Accuracy E «moe» PurchaseCost
2 Securit omess «moe» InstalationCost
y ManitenanceCostint E «moe» ManitenanceCost

3 Purchase Cost = - «moe» Security
4 |Installation Cost & weightRhpStiing=0.1 | S‘P SuperClasses
5 Maintenance amoes 5---5”?%233%6“”6

Securityint E «moe» Accuracy

Tags = «moe» PurchaseCost

& weight:RhpString=0.25 = «moe» InstallationCost

= «moe» ManitenanceCost
- «moe» Security
H-T SuperClasses

Step 2: Assign weightings to assessment criteria —

In the case study the weightings of the chosen assessment criteria are

Accuracy: 0.30
Security : 0.25
Purchase Cost: 0.20
Installation Cost: 0.15 <blocks
Maintenance Cost: 0.10 CaptureBiometricData

BDD_CaptureBiometricDataOption)

H «moes Accuracyfloat

H «moe» PurchaseCostfloat

H «moe= InstallationCostfloat
H «moe» ManitenanceCaostfloat
H zmoe= Security:float

These values are represented in the model by a tag called weight
attached to each of the <<moe>> attributes.

& authenticateBiometricD ata(AuthenticationStatus:OMString)void
&l displayAuthenticationStatus(AuthenticationStatus: OMString)void
&l scanBiometricData()void

@ In each <<moe>> attribute select the tab Tags and
add the appropriate value.

The CaptureBiometricData block attributes are copied into the T T
solutions blocks by means of the SE-Toolkit feature wblodka ablodts

Copy MOEs to Children.

@ Right-click the CaptureBiometricData block and
select SE-Toolkit > Copy MOEs to Children.

FingerprintScanner

Optical Scanner

H «moes Accuracyfloat

H «moe» PurchaseCostfloat

H «moe= InstallationCostfloat
H «moes» MaintenanceCaostfloat
H zmoe= Security:float

H zmoes Accuracy:float

H zmoe» PurchaseCostfloat

H zmoex InstallationCostfloat
H «moe» ManitenanceCostfloat
H zmoex Securityfloat

Harmony for SE Deskbook | 72

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Design Synthesis

4.5.1.5 Definition of a Utility Curve for each Criterion

The utility curve is a function that compares the outcome of an
objective analysis to a target and outputs a normalized value typically
between 0 and 10 to indicate how well the target is met.

To determine the MoE for accuracy create a linear utility curve that
examined the relationship between errors/thousand readings
(0-10 errors per thousand) and a scale of 0-10.

y=-x+10

10

0 1 2 3 4 5 6 7 8 9 10

Errors per thousand

Accuracy Utility Curve

NOTE: For a simple linear function the utility curve can be calculated
from the following formula

MoE=-(MoE range/target range)+MOE range

This simple chart yields the formula

Accuracy MoE=-Errors Per Thousand + 10

With regards to the purchase cost it is assumed that ideally the target
figure that the company would wish to pay for the hardware is $0 and
the maximum is $400 dollars a unit. This gives a utility curve - based
upon the linear graph formula described earlier - of

Purchase cost MoE=-0.025*Purchase Cost + 10 .

y =-0.025x + 10

10

8 \

6

MoE

4 \

2

0

0 50 100 150 200 250 300 350 400 450
Purchase Cost ($)

Purchase Cost Utility Curve

For the installation cost of the hardware, a maximum budget of
$1500 was estimated for 10 units. This gives a utility curve described
by the function

Installation Cost MoE=-0.0067*installation cost +10

y = -0.0067x + 10

0 200 400 600 800 1000 1200 1400 1600

Total Installations cost $

Installation Cost Utility Curve

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Harmony for SE Deskbook |73

Case Study: Design Synthesis

E] TradeStudyanalysisPkg
=21 Parckages
EE‘J BiometricScanTradeStudy

[#-{Z3 Block Definition Diagrams
=B blocks

--i CaptureBiometricData

--i Optical Scanner

--i FingerprintScanner

4.5.1.6 Assigning Measures of Effectiveness (MoE)
to each Solution

Accuracy: Fingerprint scanners are approximately in the order of 2-3
failures per 1000. For an error per thousands value of 2.5 this yields e
an MoE of 7.5 for the fingerprint scanner. Optical scanning systems
have failure rates of 0.001 per 1000. this yields an MoE of 9.999 or

effectively 10 for the optical scanner.

Purchase Cost: For the hardware to capture biometric data it has Genersl | Descrtion Attibutes | Fow Propeties | Operations | Ports | Relations | Tags | Propaties |

been estimated at $110 dollars for the finger print scanner and $ 250 e X
for the optical scanner. From the purchase cost utility function, a o [visibiity TType T tnitial Value z
purchase cost MoE of 7.25 is calculated for the fingerprint scanner and B Accuracy Public float 7.5

a purchase cost MoE of 3.75 for the optical scanner. E ruhacen i o= e

Installation Cost: For 10 units it was estimated to be $ 600 for the H MaintenanceCost Public float 8.0 |
fingerprint scanner and $ 1175 for the optical scanner. From the Eij::;'f Publi foat 80 -
installation cost utility function, an installation cost MoE of 6.0 is | | _»lJ

calculated for the fingerprint scanner and an installation cost MoE of Locate | 0K | apply ||

2.12 for the optical scanner.

Security: It has been found that optical scanners (iris or retina) are
impossible to fool, whereas fingerprint scanners have been fooled with
relatively simple methods. With this mind it was decided to give
fingerprint scanners a security MoE of 8.0 and optical scanners a

BDD_CaptureBiometricDataOption)

security MoE of 10.0. o E;m,.t_ o
Maintenance: Both systems under consideration need little aptureSiometnicbata
maintenance. However, optical scanners need slightly more gﬂmﬂeﬂ"‘ccmamw ,
. . . . gt e . amoes PurchaseCostfloat
maintenance than fingerprint scanners due to their sensitivity to light B «moes InstallationCostfloat
and the degree of cleanliness required. With this mind it was decided gzmg: g:'cﬁ‘:f;;f;‘ftc““ﬁ"ﬂt
to give fingerprint scanners am maintenance MoE of 8.0 and optical BauhenicateBiomeTicD A onicatonSas ONSTnarvord
. autnenticategiometricLatalAuthenticatanstatus: TINg Vol
scanners and maintenance MoE of 6.0. & displayAuthenticationStatus(Authentication Status:OMString)void
&l scanBiometricData(yvoid
In the browser select a block representing one of the solutions
and opend its features.
wblodm wblodm
@ Select the attribute tab. FingerprintScanner Optical Scanner
H zmoes Accuracyfloat=7 .5 H zmoes Accuracy-float=10.
. i . . X B «moes PurchaseCostfloat=7.25 B «moexs PurchaseCostfloat=3.75
@ Select the attribute to be edited and in the Initial Value field gamoe:a InstallationCostfloat=5.0 g«moex InstallationCostfloat=2.12
amoe= MaintenanceCostfloat=8.0 zmoe= MaintenanceCostfloat=6.0
enter the eXpeCted value. B zmoes Securityfloat=8.0 H zmoe= Security:float=10.0
@ Select and edit each attribute in turn.

Repeat steps 1-4 for each bock representing a solution.

Harmony for SE Deskbook |74 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

4.5.1.7 Determination of Solution

Once each of the key functions has a number of possible solutions
with MoEs assigned to them, it is possible to combine the various
solutions in order to determine the optimum solution for the
architecture.

The means of building the possible architectures is through the
Solution Architecture Diagram. It shows the component options
required to build the final variant architectures for the complete
architecture or key function. The two possible variant architectures in
this case, consist of either the FingerprintScanner or the
OpticalScanner. There are no additional components required.

Step 1: Build Solution Architecture Diagram

This diagram is created in the TradeStudyAnalysisPackage. It shows
the composition of the final product as made up from possible
solutions. Using this diagram it is possible to mix several different
solutions to key functions to realize complete system architecture. In
this instance there is only one component to be analyzed for each
architecture.

@ In the BiometricScanTradeStudy package create a
Block Definition Diagram BDD_SolutionArchitecture.

@ Create a block FingerprintScannerArchitecture.
Drag on the FingerprintScanner block and using the
decomposition relationship make it part of the
FingerprintScannerArchitecture.

@ Create a block OpticalScannerArchitecture.

@ Drag on the OpticalScanner block and using the decomposition
relationship make it part of the OpticalScannerArchitecture.

Case Study: Design Synthesis

-2 TradeStudyAnalysisPkg
= Packages

B blocks

EEJ BiometricScanTradeS tudy

- Block Definition Diagrams
o BDD_CaptureBiometricDataOption
tBw BOD_SclutionArchitecture

--i CaptureBiometricData

--i Optical Scanner

--i FingerprintScanner

Ei FingerprintScannerArchitecture

Eﬁ Parts

@ itsFingerprintScanner

E|i OpticalScannerarchitecture
Eﬁ Parts

@ itsOptical Scanner

BDD_SqutionArchitecture)

«block»
FingerprintScannerArchitecture

«block»
OpticalScannerArchitecture

1

«block»
FingerprintScanner

1

«block»
Optical Scanner

®

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Harmony for SE Deskbook |75

Case Study: Design Synthesis

Step 2: Perform Weighted Objectives calculation

Once the possible solution architectures are in place, the analysis to
determine the best solution from the presented options can be carried
out. The means of doing this analysis is the Weighted Objectives
Calculation. 1t is used to determine the solution for a particular
function. It consists of multiplying the value for each MoE by its
respective importance weighting, and then adding the resultant values
together. This is carried out for each solution for each function. The
sum of the combined solutions with the highest score is selected as
the implementation for that particular architecture or function. The
actual calculation is carried out and displayed within an Excel
spreadsheet.

To support this calculation within Rhapsody and Excel, one further
diagram is required: the Option Analysis Diagram. The option analysis
diagram shows all the variant architecture solutions for the key
function under consideration.

In the BiometricScanTradeStudy package create a
Block Definition Diagram BDD_OptionAnalysis.

Drag on the blocks OpticalScannerArchitecture and the
FingerprintScannerArchitecture.

OX©,

In the browser right-click BDD_OptionAnalysis and
select SE-Toolkit > Perform Trade Analysis.

Excel will then open up with the results of the analysis. From this
analysis it can be seen that the Fingerprint Scanner scores slightly
higher (despite the higher scores for the optical scanner in the areas of
accuracy and security) and so will be selected as the implementation
of the function ScanBiometricData.

E] TradeStudyAnalysisPkg
21 Packages

EE] BiometricScanTradeStudy

=23 Block Definition Diagrams

. -gB. BDD_CaptureBiometricDataOption
E‘ﬁ BDD_CptionAnalysis
. -Jh BOD_SolutionArchitecture
E-B blocks
--i CaptureBiometricData
--i Optical Scanner
--i FingerprintScanner
--i FingerprintScanner Architecture
--i OpticalScannerArchitecture

BDD_OptionAnalysis]

«block» «block»

FingerprintScannerArchitecture OpticalScannerArchitecture

FingerprintScannerArchitecture OpticalScannerArchitecture
weight |value W |value W

CaptureBiometricData.Accuracy 0.3 7.5 2.25 10 3
CaptureBiometricData.PurchaseCost 0.2 725 145 375 075
CaptureBiometricData.lnstallationCost 0.15 6 0.9 2.12] 0.318
CaptureBiometricData. MaintenanceCost 0.1 g 0.8 b 0.6
CaptureBiometricData. Security 0.25 g 2 10 2.5

74 7.168

Rhapsody Generated Weighted Objectives Table (Excel)

Harmony for SE Deskbook | 76

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Design Synthesis

4.5.1.8 Documentation of the Solution in the ArchitecturalDesignPkg

In the DesignSynthesisPkg create a package
ArchitecturalDesignPkg.

The elaborated system architecture is captured in the block definition
diagram BDD_SecuritySystem and the internal block diagram

IBD_SecuritySystem. Both diagrams are created in the
ArchitecturalDesignPkg.

BDD_SecuritySystem J
«Block»

SecuritySystem

CardReaderEntry FingerprintScanner

P 1 «Block»
< SecSysController

CardReaderExit

Block Definition Diagram BDD_Security System

IBD_SecuritySystem)
1 itsSecuritySystem
1 itsCardReaderExit 1 itsSecSysController

1 itsCardReaderEntry

1 itsFingerprintScanner

Internal Block Diagram IBD_Security System

By defining a composition relationship between the system block
SecuritySystem and the subsystem blocks in the block definition
diagram, automatically instances of the subsystem blocks are created
in the SecuritySystem block

It is recommended to standardize the structure of the
ArchitecturalDesignPkg. If a system block is decomposed into parts,
each part should be allocated to a corresponding package within a
package named <SystemBlockName>DecompositionPkg. The
creation of this structure is automated by means of the SE-Toolkit
feature Create Sub Packages:

Right-click the SecuritySystem block,
select SE-Toolkit > Create Sub Packages

50 DesignSynthesisPkg
=0 Packages

=53 ArchitecturalAnalysisPkg

. -0 Packages

-3 TradeStudyAnalysisPkg

=-§7 ArchitecturalDesignPkg
=2 Block Definition Diagrams
by .33 BDD_SecuritySystem

-2 Blocks
1 = - SecurltySystem
b Parts

~[g itsFingerprintScanner
[y itsCardReaderEntry
~['g itsSecSysController
------ -5 itsCardReaderExit
=8 D Internal Block Diagrams
. 28 IBD_SecuritySystem
=3 Packages
B--D SecuritySystemDecompositionPkg
=0 Packages
=8 Card ReaderEntryPkg
=R b Blocks
I {J CardReaderEntry
E| i Card ReaderExitPkg
=" b Blacks
I {7J CardReaderExit
=-E3 FingerprintScannerPkg
=3 b';' Blocks
. T FingerprintScanner
=-E3 SecSysControllerPkg
=3 bE' Blocks
------ 1 SecSysController

= b Parts
------ ['g itsSecuritySystem

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Harmony for SE Deskbook | 77

Case Study: Design Synthesis

4.5.2 Architectural Design

Fig. 4-5 shows the architecturall design workflow in the case study. SystemArchitecture

The architectural design is performed for each use case of an iteration Structure I

by transitioning from the black-box view to the white-box view — also 1]

referred to as Use Case Realization (ref. Fig. 4-6). Update Use Case SE-Toolkit Feature:
ArchitecturalDesignPkg Merge Functional Analysis

Once all use cases of an iteration are realized, they are merged in the ¢ SE-Toolkit Feature:

Integrated System Architecture Model. « Duplicate Activity View

o Allocate Operations
from Swimlanes
o Create Allocation Table

Allocate
System Properties to Parts

o Architectural Design Wizard
‘ SE-Toolkit Features:
Derive | e Create New Scenario
Realize Uc1ControlEntry) Rhapsody Project White-Box Sequence Diagrams from Activity Diagram
Uc1ControlEntry \ o Perform Swimlane
o) ‘ Consistency Check
¥ N\
(Realize Uc2ControlExit] Rhapsody Project Define White-Box SE-Toolkit Feature:
L 2 J Uc2ControlExit L Ports and Interfaces) Create Ports And Interfaces
! \
Define
State-Based Behavior of Blocks
(Merge Realized Use Cases | Rhapsody Project ~
2, | SecSys_IA ‘
N
[Verify
Integrated Sytem Realized Use Case Model
Architecture Model \ ‘
N\ .
. . . Allocate Non-Functional Reqs SE-Toolkit Feature:
Fig. 4-5 Architectural Design Workflow and and define Traceability Links Create Dependency
Associated Rhapsody Projects N

¢ L]

Baselined
@ Realized Use Case Model

Fig. 4-6 Use Case Realization Workflow and its Support
through the Rhapsody SE-Toolkit

Harmony for SE Deskbook |78 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Design Synthesis

4.5.2.1 Use Case Realization Uc1ControlEntry o)
] : Sec:zlt;csk;stem 1c

4.5.2.1.1 Update of the ArchitecturalDesignPkg D, .0
The update of the ArchitecturalDesignPkg in the Uc1ControlEntry Amin AecessPomt
model project structure will be performed in three steps. <5
Step 1: Import the ArchitecturalDesignPkg from SecSys_AA project CordReaderEnty | - FingerprintScanner

In the Rhapsody main menue select File > Add to Model, 1 1 @odo
@ navigate to the SecSys_AA project and CardReaderExit =

double-klick SecSys AA.rpy

Updated BDD_SecuritySystem

@ In the dialog box tick As unit and select

ArchitecturalDesignPkg.sbs 5D_SecaritySystom
1 itsSecuritySystem
1 itsUser |1 its CardReaderExit | 1 itsSecSysController 1 itsCamera
Step 2: Update the imported BDD and IBD 1
As in the SecSys model only the system architecture was captured in ! lsAdmin —————— ! lsAccessPoint
the BDD_SecuritySystem and IBD_SecuritySystem, the imported —
diagrams need to be updated w.r.t the use case associated actors.

Updated IBD_SecuritySystem

Step 3: Copy/paste the events, operations and attributes from the use B AecuRIDSonG

case block Uc_Uc1ControlEntry in the FunctionalAnalysisPkg into [0 Block Definition Diagrams
the system block SecuritySystem in the ArchitecturalDesignPkg. @& Blocks
=0 SecuritySystem

- Association Ends

@ Right-click the block SecuritySystem and select 2 Attributes

SE-Toolkit > Merge Functional Analysis . BeraiiCount

- Bs
5 t_Unlocked

G648 CardStatus
&

= Operations

E!--glalarmo
. ¢+ Dependencies :l_
: ey wtraces alarm

logAccountData()
logEntryData()

@ The copies are traced back to the origins. iy

e

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook |79

Case Study: Design Synthesis

4.5.2.1.2 Allocation of System Block Properies to Parts

4.5.2.1.2.1 Allocation of Operations to Parts

The allocation of operations to the parts of the system block is
elaborated graphically (White-Box Activity Diagram). The Black-box
use case activity diagram is partitioned into swim lanes, each of which
corresponds to a part of the decomposed system block (case study:
CardReader_Entry, FingerprintScanner, and SecSysController).
Based on design considerations, operations (= actions) then are
“‘moved” to respective swim lanes. An essential requirement is that
the initial links between the operations are maintained.

@ In the SecuritySystemDecompositionPkg create a package
SecuritySystemWB_AD_Uc1.

In the FunctionalAnalysisPkg > Uc1ControlExitPkg right-click
Uc1ControlEntryBlackBoxView and select
Duplicate Activity View.

Rename the copied Activity View to
Uc1ControlEntryWhiteBoxView and
move it into the SecuritySystemWB_AD_Uc1 package.

@ In the category Uc1ControlEntryWhiteBoxView partition the
Activity Diagram (Activity) into swimlanes:

- CardReader_Entry,
- FingerprintScanner and
- SecSysController.

@ Allocate blocks via drag and drop on swimlane headlines
@ Allocate actions to the respective swim lanes.

Creating a White-Box Activity Diagram:

eq@ On top of the copied black-box activity diagram create an empty

activity diagram with swimlanes. Move the operations “bottom-
up" into the subsystem swimlanes.

£ FunctionalAnalysisPkg
=00 Packages
=53 UclControlEntryPkg
-2 Blocks
[+ 3 Internal Block Diagrams
-0 Packages
== Use Cases
=@ UclControlEntry
=2 Activity Views
. #EE UclControlEntryBlackBoxView
22 Dependencies
-4 Hyperlinks
£ DesignSynthesisPkg
=0 Packages
=57 Architectural AnalysisPkg
=57 ArchitecturalDesignPkg
-3 Block Definition Diagrams
-2 Blocks
-3 Internal Block Diagrams
=3 Packages
£ ExecutionScopePkg
=-§7 SecuritySystemDecompositionPkg
=0 Packages
[-§7 CardReaderEntryPkg
[-57 CardReaderExitPkg
F-£7 FingerprintScannerPkg
-5 SecSysControllerPkg
=57 SecuritySystemWB_AD _Ucl

=2 Activity Views
=+ UelControlEntryWhiteBoxView
HHE) Activity

Harmony for SE Deskbook | 80

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Design Synthesis

Uc1ControlEntryWhiteBoxView

«Block» CardReaderEntry

«Block» SecSysController

«Block» FingerprintScanner

readSecurity Card

displayCardStatus

«MessageAction»
reqValidateSecurityCar

Camera
[
«MessageAction»

reqTakeSnapshot

[First

!

X

[else]

(ﬂagSecurityCardFailure)

[ScFailCount==3]

[CardStatus =="Valid"]

disableBiometricScan

’

(ﬂagBiometricScanFailure)

[else]

icScan

[BsFailCount==3]

logAccountData

Admin
*

«MessageAction»
reqProcessAlert

Admin

«MessageAction»
reqResetAlarm

AccessPoint

«MessageAction»
reqLockAccessPoint

AccessPoint
«MessageAction»

evAccessPointLocked

scanBiometricData

(authenticateBiometricData)

+.

A

setAutheticationStatus

I
[else] [AuthenticationStatus

=="Authenticated"]

logEntryData

AccessPoint

t_Unlocked

(“displayAuth
play

disableBiometricScan

White-Box Activity Diagram Uc1ControlEntry

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Harmony for SE Deskbook | 81

Case Study: Design Synthesis

NOTE: In order to provide the required functionality for the chosen Summarizing the Allocation of Operations
design, two actions that do not have an associated system requirement

had to be added to the white-box activity diagrams: The allocation of operations to the subsystems may be summarized in
an Excel spreadsheet by means of the SE-Toolkit feature Create
enableBiometricScan and Allocation Table.
disableBiometricScan
\ \ \ \ 57 DesignSynthesisPkg
A respective derived requirement needed to be formulated and stored in - Packages
the DerivedRequirementsPkg. &1 ArchitecturalAnalysisPkg
=53 ArchitecturalDesignPkyg
--DE Block Definition Diagrams
Requirement : BiometricScanActivation in DerivedReguiren + =) % Fnl‘gacrﬁ’:zl Block Diagrams
General |Descriptjon Relations | Tags | Propem'es‘ |L & "gcfl.()?gcistionmpepkg
) : - — -7 SecuritySystemDecompositionPkg
Name: BiometricScanActivation i B--Dgckaqes
Stereotype: DerivedRequirement v Gl el -5 CardReaderEntryPkg
. - ﬁl_l [H-57 CardReaderExitPkg
Type: Requirement '] | FH-57 FingerprintScannerPkg
ID: [H-§7 SecSysControllerPkg
=50 SecuritySystemWB_AD_Ucl
Defined in: DerivedRequirementsPkg B@ Activity Views
S =& UclControlEntryWhiteBoxView
Specification: @ Activity
The biometric scan device shall be activated only
when there is a request -
< | 11 | »
Locate Ok Ad

@ Right-click Activity in SecuritySystemWB_AD_Uc1 >
ActivityViews > Uc1ControlEntryWhiteBoxView.

@ Select SE-Toolkit > Create Allocation Table

FingerprintScanner SecSysController | CardReader_Entry
scanBiometricData validateSecurityCard alarm
authenticateBiometricData | flagBiometricScanFailure displayCardStatus
enableBiometricScan disableUserAccount readSecurityCard
disableBiometricScan flagSecurityCardFailure resetAlarm
displayAuthenticationStatus logEntryData
logAccountData

Allocation Table of Uc1ControlEntryWhiteBoxView (Excel Spreadsheet)

Harmony for SE Deskbook | 82 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Design Synthesis

Formalizing the Allocation of Operations

Once an allocation concept is elaborated, the allocation is formalized by
copying the system block operations and receptions - incl.
documentation and requirements dependencies - to respective
subsystem blocks. This process is supported by the SE-Toolkit feature
Allocate Operations from Swimlanes.

Right-click Activity in

SecuritySystemWB_AD_Uc1 > ActivityViews >
Uc1ControlEntryWhiteBoxView and select
SE-Toolkit > Allocate Operations from Swimlanes.

@ In the ArchitecturalDesignPkg
select system block SecuritySystem and
click Set Destination

@ In the Modeling Toolbox dialog box
click Allocate Operations from Swimlanes

4 Modeling Toolbox

Options About

Set Source | Exit | et Destination 4@
ActivityDiagram block

activitydiagram_0 SecuritySystem

L[| Populate Activity Diagram

[Creste Allocations

Allocate Operations
@ fromSwirnlanes

Other |

The reason for the error messge below is, that - as mentioned in the
previous paragraph - the actions/operations enableBiometricScan and
disableBiometricScan were added afterwards to the white-box activity
diagram Uc1ControlEntry. Therefore they are not included in the set of merged
use case operations in the SecuritySystem block.

@ Modeling Toolbox

Options About
Set Source Exit SetDestination

ActivityDiagrarm block
SecuritySystern

activitydiagram_0

There were problems - see Errors Tab for details

[ml~.ction enableBiometicScan has no corresponding operation in block Securi
[Action disahleBiometicScan has no corresponding operation in hlock Secur
[Action disableBiometricScan has no corresponding operation in block SecunitySystem
[Action disahleBiometricScan has no corresponding operation in block SecuritySystem

Select Al Accept Selected Double-Click an Error to Clear
Locate it in Rhapsody
Other | Errors;

In order to add these operations to the SecuritySystem block and to
allocate them to the FingerprintScanner block:

In the dialog box Select All,

@ click Accept Selected.

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Harmony for SE Deskbook | 83

Case Study: Design Synthesis

4.5.2.1.2.2 Allocation of Attributes and Events to Parts

The allocation of SecuritySystem block attributes and receptions =3 SecuritySystemDecompositionPkg
(events) to the subsystems is performed by means of the SE-Toolkit & g gﬁﬂfﬁademnwpm
feature Allocation Wizard. =2 Blocks

=3 C.ilrdlleaderEntryr
NOTE: This SE-Toolkit feature may also be used for allocating 9”?%“2%5;
operations. E|E :rratloigs

-&d readSecurityCard()

o alarm()
. d resetAlarm()
@ In the ArchitecturalDesignPkg right-click SecuritySystem block, o displayCardStatus(OMString CardStatus)
select SE-Toolkit > Allocation Wizard &L reqReadSecurityCard()
[-Ep reqResetAlarm()
. . =-fJ CardReaderExitPkg
In the dialog box select Attributes =3 bE' Blocks
() CardReaderExit
@ In the Allocate To drop-down menue select SecSysController. 2 %’ % gﬁ,rcpks""tm""erpkg
= F|ngerpr|nt5canner
: : B (2 Attributes
In. the Allocate From window select attribute(s) and * @8 <Web Manageds t Bs
click Allocate

: «Web Managed» AuthenticationStatus
E| (Z Operations
NOTE: If an element needs to be allocated to more than one [scanBiometricData()
subsystem, select Allocate but Leave in Pool o authenticateBiometricData(OMString AuthenticationStatus)
o displayAuthenticationStatus(OMString AuthenticationStatus)
enableBiometricScan()
- disableBiometricScan()
& reqScanBiometricData()

=-E7 SecSysControllerPkg
4 3 -2 Blocks
= SecSysGontroller

E| Attributes
|| Allocation Wizard =

- «Web Managed» ScFailCount
Options

-[HH

Repeat step 2 - 4 for the allocation of events.

i
2

«=Web Managed=» BsFailCount

«Web Managed=» t_Unlocked

<Web Managed» AuthenticationStatus
® «Web Managed: CardStatus

Allocate From Allocate To:
f r

block: SecuritySystem [SecSysController |] logEntryData()

disableUserAccount()

logAccountData()
validateSecurityCard(OMString CardStatus)
flagBiometricScanFailure(int BsFailCount)
flagSecurityCardFailure(int ScFailCount)

t Unlocked I H-5F evAccessPointUnlocked()

- o B & evAccessPointLocked()

AuthenticationStatus

CardStatus l DeAllocate = J

Allocated Attributes, Operations and Events

ScFailCount l Allocate = J I
BsFailCount

t Bs l Allocate but Leave in Poal = J

——l Altributes l Operations l Events J

Harmony for SE Deskbook | 84 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Design Synthesis

4.5.2.1.3 Derivation of White-Box Sequence Diagrams

White-box scenarios are derived from the white-box activity diagrams

by means of the SE-Toolkit feature Create New Scenario From

Activity Diagram.

Section 4.4.1.3.

«#Blocks CardReaderEntry

«#Blocks SecSysController

w#Blocks FingerprintScanner

User

o8 0
i read Security Card &
m, O |

C} {1
[displayCand Status

|
reqValidatese mrityCard _
o &

[First Request]

[else]
- = |
i validate Security Card 5
m O |

it

resethlam

di i icScan

[BsFailCount==3]

i i icScan
3
§ authenticateBiometricData E

[Authentication Status
=="Authenticated"]

- =
display Status
T

In the SecuritySystemDecompositionPkg create a package
SecuritySystemWB_SD_Uc1 and follow the steps outlined in

@ Modeling Toolbox
Options About

Set Source

Exit

o U ActivityDiagramGE

O
.

Multiple tems Selected
Check Source Tab for Details

Create MNew Scenario From
Activity Diagram

I

Option:

Set Desfination

Package

SecuritySystemWB_AD_Uct

[~ Use Design Rules:

[CopyDependencies

[Copy Tags

[~ Copy Descriptions

[v Create Messages from Ping
[Create Events

Design Pl

[¥] Remove Carriage Returns

€ Replace llegel Characters With Underscores

@ Femove lllegal Characters

[¥] Capitalise First Lettars

G te SDs | Source

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Harmony for SE Deskbook | 85

Case Study: Design Synthesis

WB_Uc1Sc1 Nominal J

:User :CardReader :SecSysController :Fingerprint :AccessPoint :Camera
Entry Scanner

reqReadSecurityCard() ‘ ‘

readSecurityCard() ‘

| reqValidateSecurityCard() ~J
/\ reqTakeSnapshot() ‘
‘ validate SecurityCard(CardStatus)

reqDisplayCardStatus(CardStatus)

| displayCardStatus(CardStatus) ‘

<CardStatu9=“VaIid" > ‘

reqEnableBiometricScan()

enableBiometricScan()
<=t BS
| |
‘ scanBiometricData()
‘ authenticateBiometricDa uthenticationséus)
7

displayAuthenticationStat Authenticationsgtus)

reqScanBiometricData()

\\g\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ NANNANNNNNNN
NARRA A RRR R SERRA R SRR SRR GNARA SARRA NN

N\

ts

retAuthenticationﬁtatus(AuthenticationStatus)

Il
‘ AuthenticationStatus==
‘ "Authenticated”

‘ reqDisableBiometricScan(). '
‘ disableBiometricScan()

logEntryData()

 reqUnlockAccessPoint()
t_Unlocked \/

evAccessPointUnIocked(f

1
@ ‘ reqLockAccessPoint()

evAccessPointLocked(f

N N N N N NN NN NI

A RN
AN ERRRRRA R RARRA A RARRA SRR ARG RRARANRNNNN

|

Derived White-Box Use Case Scenario WB_Uc1Sc1 Nominal

Harmony for SE Deskbook | 86 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Design Synthesis

WB_Uc1Sc3 Exception BiometricScan)

Derived White-Box Use Case Scenario

WB Uc1Sc3 Exception BiometricScan :User :CardReader :SecSysController :Fingerprint :Admin
Pre-Condition: 2-Times Failed Authorization Enery Scanner

2 enableBiometricScan() 2

% z

% reqScanBiometricData() %

% scanBiometricData() %

Z 7

2 authenticate BiometricData(Authe ntiegtionStatus)

Z

Z 7

% displayAuthenticationStatus(Authe ntiétionStatus)

Z 7

Z

retAuthenticatiol Iéhtus(Authe nticationStatus)

<AuthenticationStatu;= >
"Not Authenticated"
:CardReader :SecSysController :Admin . !

Entry flagBiometricScanFailure(BsfailCount)

< BsFailCount=3 >

reqDisableBiometricScan

WB_Uc1Sc2 Exception CardReaderEntry)

validateSecurityCard(CardStatus)

regDisplayCardStatus(CardStatus)
displayCardStatus(CardStatus)

<CardStatus=="NotValid" >

flagSecurityCardFailure(ScFailCount]

< ScFailCount=3 >

disable UserAccount()

disableBiometricScan()

disableUserAccount()

=3

ANARARRRRRRARRARRRERR AR AR RR R GARRRRARARRRRA RN RSN RN RANANNNNNNANY

logAccountData()

reqAlarm()
:lglaM()

T T NNNNN

reqProcessAlert(AlertType) N Z

logAccountData() |< reqResetAlarm(] %

reqResetAlarm() %

;:setAlarm() 7

'g reqAlarm() z %
larm() 2
reqgProcessAlert(AlertType) 2

(reqResetAIarm(f %

reqResetAlarm() 1 R i 4

IgesetAlarm()

Derived White-Box Use Case Scenario
WB_Uc1Sc2 Exception CardReaderEntry
Pre-Condition: 2-Times Failed SecurityCard Check

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 87

Case Study: Design Synthesis

4.5.2.1.4 Definition of Ports and Interfaces

Once all black-box use case scenarios are decomposed into white-box In the ArchitecturalDesignPkg right-click the package
scenarios, the resulting subsystem ports and interfaces are defined by @ SecuritySystemWB_UcSD and select
means of the SE-Toolkit feature Create Ports And Interfaces. SE-Toolkit > Create Ports And Interfaces.
NOTE: The SE-Toolkit feature only defines the behavioral
ports and associated required/provides interfaces.
@ Manually add Delegation Ports and associated interfaces.
@ Connect ports either manually or right-click in the IBD
and select SE-Toolkit > Connect Ports.
IBD_SecuritySystem J
1 itsSecuritySystem
1 itsUser 3 1 itsCardReaderExit 1 itsSecSysController 1 itsAccessPoint
pAccessPoint [—{ —1] pSecSysController
1 itsCardReaderEntry 1 itsCamera 3
pCardReaderEntry []—[]_[I] pUser pSecSysController [I]—[:I pCardReaderEntry pCamera [}— pSecSysController
1 itsFingerprintScanner 1 itsAdmin Y
pFingerprintScanner [lj—[]—[I] pUser pSecSysController [|]_[|] pFingerprintScanner pAdmin [IJ—[pSecSysController

Internal Block Diagram of the Realized Use Case Uc1ControlEntry

Harmony for SE Deskbook | 88 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Design Synthesis

Documentation of System Interfaces (ICD)

A commonly used artifact for the documentation of the communication gf rfacesPka

in a network is the N-squared (N) chart. In an N? chart the basic B+ Packages

nodes of communication are located on the diagonal, resulting in an % Dol WE Intertesospig

NxN matrix for a set of N nodes. For a given node, all outputs =-(E Interfaces

(UML/SysML required interfaces) are located in the row of that node D"%%’SE—;Z?;?"”E"W
and inputs (UML/SysML provided mterfaces) are in the coumn ofthat | | T P reqReadSecurityCard()
node. The diagram below depicts the N? chart of the realized use case 9"%%?3232:1?"&&““
Uc1ControlENt,Y. T & reqTakeSnapshot()

=38 Q %ecSysControlIer_CardReaderEntry
2 . . == Operations
The N° chart is generated by means of the SE-Toolkit feature "EP reqDisplayCardStatus(OMString CardStatus)

Generate N2 Matrix:

g reqResetAlarm()
In the ArchitecturalDesignPkg right-click the internal block diagram E—J% %ecSyquntroller_FingerprintScanner
IBD_SecuritySystem and select SE-Toolkit > Generate N2 Matrix. P leBiometricScang
g reqDisableBiometricScan()

=3 Q iUser_FingerprintScanner
=3 @ Operations

------ EP reqScanBiometricData()
=3 Q iFingerprintScanner_SecSysController
= @ Operations

------ EP retAuthenticationStatus(OMString AuthenticationStatus)
=3 E iSecSysController_AccessPoint
=2 Operations
P regUnlockAccessPoint()
1 reqglockAccessPoint()
=-H iAccessPoint_SecSysController
=& Operations
-~k eviccessPointUnlocked()
g evAccessPointLocked()
=3 Q iCardReaderEntry_SecSysController
=3 @ Operations

------ EP reqValidateEntryRequest()
—-H iSecSysController Admin
= @ Operations

------ EP reqProcessAlert(OMString AlertType)
=-E iAdmin_SecSysController

=3 @ Operations

------ EP regResetAlarm()

!

User Admin Camera AccessPoint CardReaderE ntry FingerprintScanner Sec SysController
User X iUser_CardR eaderE ntry ilser_FingerprintS canner
Admin X iAdmin_SecSysController
Camera X
AccessPoint X iAccessPoint_SecSysController
CardReaderE ntry X iCardReaderEntry_Sec3ysC ontroller
FingerprintScanner X iFingerprintScanner_SecSysController
Sec SysController iSecSysController_Admin |iSecSysController_ Camera |iSecSysController_AccessPoint |iSecSysController_CardReaderEntry |iSecSysController_Fingerprintscanner X

N? Chart of the Realized Use Case Uc1 ControlEntry

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 89

Case Study: Design Synthesis

4.5.2.1.5 Definition of Realized Use Case Behavior

State-based Behavior of the CardReaderEntry Block and FingerprintScanner Block

| CardReaderEntry_Ctrl |
e N

v

WaitForRequest

[params-> CardStatus == "Valid")/
displayCardStatus("Valid");

regDisplayCardStatus =¢

[else)/
displayCardStatus("Not Valid");

1 itsSecuritySystem

Tl 1 itsCardReaderExit 1 itsSecSysController el

| 1 itsCard ReaderEn;[!\ @

[j_l:ll] pUser pSecSysCantroller EIIJ_CJ pCardReaderEntry

z

1 itsFrrfgerQrintScanner(3,

~

~

pAccessPoint

pCamera [

—L

Tt

reqReadSecurityCard/ _#TpUser pSecSysCefitroller =] pFingerprintScanner Admin [F—L
readSecurityCard(); e /59 EP—EF\ N P
reavalidateEntrvReauest to pSecSvsController > JPiat = T

1 FingerprintScanner_Ctrl h
| AlarmOff | I
L y J [BiometricScanDisabled]4—-
reqResetAlarm/ reqAlarm/ ¢ J
resetAlarm(); alarm(); ; ;
0: ’ reqDisableBiometricScan/ rqunab!eBlorr!etrlcSceTnl
I Alarmon | disableBiometricScan(); enableBiometricScan();
t 3 - - :)
_) BiometricScanEnabled
(waitForScanRequest }
tm(t_BS)/
disableBiometricScan(); reqScanBiometricData/
| evBsTimeout to pSecSysController > scanBiometricData();
| retAuthenticationStatus("Not Authenticated") to pSecSysController >
[AuthenticationStatus=="Not Authenticated"]
(AuthenticateBiometricData iz
authenticateBiometricData(AuthenticationStatus); displayAuthenticationStatus(AuthenticationStatus);
|\ J
T [AuthenticationStatus=="Authenticated"]
retAuthenticationStatus("Authenticated") to pSecSysController >
J

Harmony for SE Deskbook | 90

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Design Synthesis

State-based Behavior of the SecSysController Block

Note the reuse of behavior patterns in the statechart diagram of the
SecSysController block. The statecharts ProcessingSecurityCardData
and ProcessingBiometricData are extended copies of the ones used in
the black-box Uc1ControlEntry use case block. The statechart
UnlockingAndLockingAccessPoint is an unchanged copy.

SecSysControllerEntry_Ctrl

I WaitForEntryRequest I‘_-

C 7

l reqValidateEntryRequest

| reqTakeSnapshot to pCamera >

ProcessingSecurityCardData < 1 >

Cardvalid ScFail3Times o J

[ProcessingBiometricData \ 2
l Authenticated

IdisableUserAccount();
logAccountData();

BsTimeout BsFail3Times et

IdisableUserAccount();
logAccountData();

I logEntryData();

UnlockingAndLockingAccessPoint | reqAlarm to pCardReaderEntry >

3

reqProcessAlert("User Access Disabled") to pAdmin >

| WaitForResetAlarm |

l reqResetAlarm

| reqResetAlarm to pCardReaderEntry >

evAccessPointLocked é

ProcessingSecurityCardData

I IScFailCount=0;
ValidatingSecurityCard = @

validateSecurityCard(CardStatus);

| reqDisplayCardStatus(CardStatus) to pCardReaderEntry>

Validate EntryRe quest
reqValidateEntryReque [CardStatus=="Valid"]

I WaitForRequest '
X [else]

SecCardFailure =

CardValid

flagSecurityCardFailure(ScFailCount);

[ScFailCount<3]

[else]

reqAlarm to pCardReaderEntry >

* ScFail3Times
| J/

ProcessingBiometricData

I IBsFailCount=0; @

| reqEnableBiometricScan to pFingerprintScanner >

!

WaitForBiometricScaninfo]

P

retAuthenticationStatus | evBsTimeout

BsTimeout .

[params->AuthenticationStatus=="Authenticated"]
[BsFailCount<3] ‘

regDisableBiometricScan to pFingerprintScanner >

[else]

Authenticated
BiometricScanFailure & »®

flagBiometricScanFailure(BsFailCount); [BsFailCount=3]

reqDisableBiometricScan to pFingerprintScanner >

BsFail3Times

\ ¥

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Harmony for SE Deskbook | 91

Case Study: Design Synthesis

Behavior of the Actor Blocks

Taking into consideration the communication via the additional actor The state-based behavior of the actor block AccessPoint needs to be
port in the User block and Adminstrator block, both behaviors need to extended graphically.

be extended by applying the SE-Toolkit feature Create Test Bench

(ref. Section 4.4.1.5). No change is needed for the actor Camera.

(AccessPointCtrl h
Example: Actor block User:
In the Internal Block Diagram IBD_SecuritySystem right-click the [tocked |
block User and select SE-Toolkit > Create Test Bench.
| evAccessPointLocked to pSecSysController > reqUnlockAccessPoint
Existing Statechart Found 3 g
unlocking
| evAccessPointLocked to pUc_Uc1ControlEntry >
This Actor already has a Statechart. Please read the follwoing oprions tm(1000)
carefully tm(1000)
Click Yes to add a new Statechart - the original will be retained.

evAccessPointUnlocked to pUc_Uc1ControlEntry >

Click No to DELETE the existing Statechart and replace it with a new one. locking
Click Cancel to back out. Nothing will be deleted or created +

reqLockAccessPoint evAccessPointUnlocked to pSecSysController >

l

.

@ Select No ~)
=

Active (33

Yes No Cancel

@ send_reqRead SecurityCardThruPortplUc_Uc1ControlEntry/...OPORT{pUc_Uc1ControlEntry)->GEN{reqRead SecurityCard);
@ send_reqScanBiometricDataThruPortpUc_Uc1ControlEntry/...OPORT(pUc_Uc1ControlEntry)->GEN(reqScanBiometricData);
@ send_reqRead SecurityCardThruPortpCardReaderEntry/...OPORT(pCardReaderEntry)->GEN{reqRead SecurityCard);

@ send_reqScanBiometricDataThruPortpFingerprintScanner/...OPORT(pFingerprintScanner)->GEN(req ScanBiometricData);

Extended Behavior of the Actor Block User

@ Repeat the steps 1-2 for the actor block Admin.

Harmony for SE Deskbook | 92 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Design Synthesis

:Fingerprint :AccessPoint :Camera

Scanner

:SecSysController

:User :CardReader
Entry

reqReadSecurityCard()

4.5.2.1.6 Realized Use Case Verification
The realized use case model Uc1ControlEntry, is verified readSecurityCard()
through model execution on the basis of the captured

A reqValidateSecurityCard()
use case scenarios. The correctness and completeness

NESNSANSNNSN

analysis is based on the visual inspection of the model reqTakeSnapshot()
behavior (animated Statechart and Sequence SecurityCard(CardSfatus = Valid)
Diagrams). reqDisplayCafdStatus(CardStatus = Valid)

s = Valid)

isplayCardStatus(CardStaty

4.5.2.1.7 Allocation of
Non-functional Requirements

enableBiometricScan()

reqScanBiometricOata()

I—

|

So far the focus was on the allocation of system-level
operations and associated functional system
requirements to the parts of the chosen architectural
decomposition. Latest at this stage, derived functional
requirements should have been approved and linked to
respective operations. The final step in the use case
realization taskflow is the allocation of non-functional
requirements. In order to assure that all use case related
non-functional requirements are considered, traceability

scanBiometricData()

authenticateBiometricData(

AuthenticationStatus = Auth

ticated)

ted)

dienlavAuth,
display

Authenticati A

Authenticati tus = A

reqDisableBiometricScan

disableBiometricScan()

ticati = Authenti€ated)

reqUnlockAccessPoint()

NAAAREANA A RRRRASARNRRARARRNNNVANN

links from the relevant subsystem block to the non-
functional system requirements need to be defined using
a <<satisfy>> dependency.

SIANNANNNRNANANNNN

T

tm(1000)

evAccessPointUnlocked|(]

\.

A AANANRANNNNN

tm(5000)

3

qLockAccessPoint()

|

-3

m(1000)

evAccessPointLocked()

AANAR R SEARRARRRERRRERRERRRRRERRRE SERRRRREERRRERREERRRREERRRRRERRRR SRR RRRRRRRRRRARR SRR R RSRRARARRRARNNNN
ANARSEARRARAREEERRREEERRRREERRRE SEREARESERRRREEERRRREERRRRSERRRRLEERRRERERRRRRRAARNRSSRRRRRSRRNNRNNNRNRNNNN

\\\\\\\\\;\\\\ﬁ

Animated Sequence Diagram WB_Uc1Sc1 Nominal)

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 93

Case Study: Design Synthesis

4.5.2.2 Use Case Realization Uc2ControlExit
4.5.2.2.3 Derivation of White-Box Sequence Diagrams

4.5.2.2.1 Update of the ArchitecturaIDesignPkg WB_Uc2Sc1 Nominal and Exception]

User :CardRead er :5ecSys Controller :Admin :Acce s5Poi
Exit nt

The steps to be performed are similar to the ones described in Section
4521.1. Z Z

L
" " ﬂﬂﬂ) ﬂ) checkFDrTlmeLimitViDIatiDns{'l’lmeLiéitFlag} 2
4.5.2.2.2 Allocation of System Block Properies to Parts Z Z
— “
«Blocks CardReaderExit uBlocks SecSysController = P m"ill_lmlzl - ! 2 2
reqrrocessalel i o g

/R R EE——— é— - —2; -

regRead SecurityCard{} 3

read SecurityCard(}

reqValidate SecurityCard(} 3

re%’ playCard Status{Card Status)
isilayCa rd Status({Card Status)|

[a]
read SecurityCard va idate SecurityCard

(EheckForT'meLim Violations j

Admin [Time LimitFlag==true] walidate SecurityCard[Card Status}

displayCardStatus

[Card Status==\falid]

R

z
-
i
-
-
-
7
-
z
-
-
Z Z
“ -
- “
- “
- “
“ -
- “
- “
- “
- -
- “
- “
- “
“ “
7 7
? A
f alt [Card Status=="Not Valid"] “
[else] ? flag SecurityCardFailure{ ScFailCoun ?
/ - 7
TlagsecuriyCardraiure Z Z
Z < ScFailCount==3 > Z
[ScFaiCount3] ? ?
A A reqAlarmi) A
- “
i larmf} “
- “
/ 7
? reqProcessAlert{AlertType) " ?
alarm Admin ; rEqResEtAlarmn’/ é
il L ; reqResetAlarmi) ; ?
i (P “ setAlarm() “ e
«MessageAction» logExitData o “ “
reqProcessAkert 2 2 ?
A | Acccsspom Z e N = B e
resetilarm «MessageActions 2 logExitData(} ; 6
reqUnlockAccessPo in - f “
7 - 7 ’
% regUnlockAccessPointf) -\‘¢
AccessPoint m“l_"ld“t J 2 t Unlocked |, evAcce{;PnintUnlnckeuﬂ 2
2 i
" A
v («MessageActions ; regLockAccessPoint]) ; \%
LA evAccessPointUnbcked / evAccrssPaintLockedl] <
" t_Unlocked < I
AccessPoint o -
[+] -
«MessageActions . o o
evAccessPointLocked 2 f 2
z < ”
“ o “
’ ’ 7
Z 4 . Z Z
White-Box Activity Diagram Uc2ControlExit White-Box Use Case Scenario WB_Uc2Sc1 Nominal and Exception

Harmony for SE Deskbook | 94 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Design Synthesis

4.5.2.2.4 Definition of Ports and Interfaces

SecSysControllerExit_Ctrl |

~
IBD_SecuritySystem) :
1 itsSecuritySystem [WaitForExitRequest]-_-

LI |
l reqValidate SecurityCard

7 teUser =] |1 itsCardReaderExit | [+ itssecssController

pCardReaderExit 1 itsAccessPoint 3| r Processing SecurityCardData |

pCardReaderExit pUser pSecSysController|

i pSecSysController CardValid Fail3Times |
1 itsCardReaderEntry PAccessPoint [=
1 lsAdmin NogExitData(); | reaAlarm to pCardReaderExit >
1 itsFingerprintScanner
pSecSysController

| reqProcessAlert("Exit Failure") to pAdmin >
[UnlockingAndLockingAccessPoint [WaitForResetAlarm]
[

|
reqResetAlarm

IBD of the Realized Use Case Model Uc2ControlExit
with generated Ports and Interfaces l 3

evAccessPointLocked
reqResetAlarm to pCardReaderExit >

4.5.2.2.5 Definition of Realized Use Case Behavior -
(ProcessingSecurityCardData R (CheckingForTimelimitViolations @T)
. PR : imi - tm(t_Update)
I 1ScFailCount=0; (2= checkForTimeLimitViolations{TimeLimitFlag);
ValidatingSecurityCardData e [TimeLimitFlag=false; Tl [TimeLimitFlag==true]
validateSecurityCard(CardStatus); reqProcessAlert{"TimeLimitViolation") to pAdmin >

- A ¢ 7 . J

reqDisplayCardStatus(CardStatus) to pCardReaderExit >

reqValidateSecurityCard) Note the reuse of behavior patterns in the statechart diagrams. The
@ [CaraStatus™="Valid"l) statecharts SecSysControllerExit_Ctrl and ProcessigSecurityData are
— [else] CardValid extended copies of the ones used in the black-box Uc2ControlExit use

r case. The statechart UnlockingAndLockingAccessPoint is an

SecCardFailure =

flagSecurityCardFailure(ScFailCount); u nChanged COpy.

C

Similar to the steps described in Section 4.5.2.2.5, the behavior of the
[8cFallCount <3] actor blocks User and Adminstrator needs to be extended by applying

) the SE-Toolkit feature Create Test Bench. The state-based behavior of
\ J the actor block AccessPoint needs to be extended graphically.

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook |95

Case Study: Design Synthesis

4.5.2.2.6 Realized Use Case Verification

User :CardReader :SecSysController zAdmin :AccessPoin
E xit

The realized use case model Uc2ControlExit, is verified
through model execution on the basis of the captured use
case scenarios. The correctness and completeness
analysis is based on the visual inspection of the model
behavior (animated Statechart and Sequence Diagrams).

o
c.heckForTimeLimi‘t\.-'iolatiésﬂ'imeumi‘tFlag =1)
7
regProcessAlert(Al erlT‘,rp§= TimeLimit\Violation)
“

chec imeLimitViolatiofis(TimeLimitFlag = 0)

NN

reqRead SecurityCard()
read SecurityCard()

reqValidate SecurityCard()

4.5.2.2.7 Allocation of

Non-functional Requirements valflate SecuriyCard(Car

tatus = Valid)

reqDisplayCarjd Status(Card Status = Valid)
The final step in the use case realization taskflow is the

allocation of non-functional requirements. In order to
assure that all use case related non-functional
requirements are considered, traceability links from the
relevant subsystem block to the non-functional system
requirements need to be defined using a <<satisfy>>
dependency.

logExitData()

regUnlockAccessPoint()

disTIayCard Status{Card Stajus = Valid)

=3

1000)

T T g

AccessPointUnlocked()

\\\\i\i\\ N
El

e S s

“ o
500
S(00) 7 Z
% ¢
regLockAccessPoint{) ; ;
\%
7 7 tm(100)
“
f “
;evnccesspointLockedt} ;
S 7 7
Z “
< L
< L
< o
< “
“
; %
Z 7

Animated Sequence Diagram WB_Uc2Sc1 Nominal

Harmony for SE Deskbook | 96 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

4.5.2.3 Integrated Use Case Realization

The final task in the architectural design phase is the Integrated Use
Case Realization, i.e.the merger of the realized use case models in
the Integrated System Architecture Model.

Before merging a realized use case model, care must be taken that in
the two models all operation names and associated system
requirements links are unique, i.e.

- If two operations with different names describe the same functionality
and are linked to the same system requirement, the names need to
be harmonized.

- If two operations have different names and describe different
functionality but are linked to the same requirement, the system
requirement needs to be split. For the child requirements respective
trace links have to be established.

- If two operations have the same name and are linked to the same
requirement but describe different functionality, the names need to
be modified and the system requirement split accordingly. For the
child requirements respective trace links have to be established. In
the case of changes the realized use case model needs to be
baselined accordingly.

Fig. 4-7 shows the Integrated Use Case Realization workflow.

The first step is the creation of a Rhapsody Harmony compliant project
SecSys_IA. The realized (WB) use case model Uc1ControlEntry was
chosen as first contributor and imported into this project.

It is important to keep in mind, that the subsequent integration of
realized use cases essentially focuses on the integration of the
respective architectural components. Once imported, additional steps
are needed to enable the collaboration (ref. Fig. 4-8).

Regarding the import of the realized use case model Uc2_ControlExit,
the relevant information will be captured in a separate Rhapsody
project Uc2ControlExit_HandOff. It should be noted, that this
project is only a temporary project, to be used only for the integration.

The use cases collaboration as well as the correctness and
completeness of the integrated system architecture model will be
verified through model execution.

Case Study: Design Synthesis

Realized
Uc1ControlEntry I

Create Base IA Model]

Realized
Uc2ControlExit

I y
[Refactor Use Case Model]
s

Uc2ControlExit_Handoff

(Integrate Realized Use Case W
L l =)

Verify Collaboration
through Model Execution

y
®

Fig. 4-7 Integrated Use Case Realization Workflow

!

[Add to Model Packages]

[Merge Interfaces Pkgs
SE-Toolkit Feature:
Merge Blocks Merge Blocks
Create / Update SE-Toolkit Feature:
Ports and Interfaces Create Ports And Interfaces

Integrate Imported
Block Statecharts

!

Refactor Integrated
Block Statecharts

}

[Refactor Actors Behavior]

®

Fig. 4-8 Use Case Integration Task Flow and its Support
through the Rhapsody SE-Toolkit

SE-Toolkit Feature:
Create Testbench

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Harmony for SE Deskbook | 97

Case Study: Design Synthesis

4.5.2.3.1 Creation of Base IA Model

In the case study the realized use case model Uc1ControlEntry_AD] SecSys 1A]
was chosen as the base Integrated System Architecture Model. g g;’c“;gggsems
=1 RequirementsAnalysisPkg

£
=0 Packages

-§7 RequirementsPkg
£
=

il
Lt

DesignSynthesisPkg

[Packages

=-£3 ArchitecturalDesignPkg
=5 D Block Definition Diagrams
b .33 BDD_SecuritySystem

@ Create a Harmony compliant project SecSys_IA

In the RequirementsAnalysisPkg Delete from Model the

UseCaseDiagramsPkg =2 Blocks
Eiw : SecuritySystem
. . & Association Ends
@ Delete from Model the FunctionalAnalysisPkg . B1E connectors
- BEE Parts
B (2 Standard Ports
. . = D Internal Block Diagrams
@ Add to Model As unit from the Rhapsody project Uc1ControlEntry . -g8 IBD_SecuritySystem
the packages & E‘ Packages
#-50 ExecutionScopePkg
- ActorPkg.sbs =4 SecuritySystemDecompositionPkg
.) . =0 Packages
- ArchitecturalDesignPkg.sbs &£ CardReaderEntryPkg
- InterfacesPkg.sbs B4 CardReaderExitPkg

£ FingerprintScannerPkg

. . -7 SecSysControllerPkg

Delete from Model all attributes and operations of the block . H-E0 SecuritySystemWB_SD_Ucl

i [+-41 ActorPkg
SecuritySystem E15 InterfacesPka

% Events
In the InterfacesPkg =-c2 Interfaces
#-E iUser_CardReaderEntry

- Delete from Model the Uc1_BB_InterfacesPkg & & iUser_FingerprintScanner
- Move the interfaces in the Uc1_WB_Interfaces into the {1 5 iSecSysController Camera

I H iSecSysController_CardReaderEntry
H iSecSysController_FingerprintScanner
I H iCardReaderEntry_SecSysController
+-H iFingerprintScanner_SecSysController
I H iSecSysController_AccessPoint

InterfacesPkg and Delete from Model the empty
Uc1_WB_ InterfacesPkg.

@ In the SecuritySystemDecompositionPkg Delete from Model the : % |iecSysgontrolezrsAs%r;nn)
. iAccessPoint wvsController
package SecuritySystemWB_AD_Uc1 5 iAdmin SecSysController
£ TypesPkg
In the ActorPkg Delete from Model all functional analysis related -0 Profiles

actor ports (pUc_Uc1ControlEntry).
Rhapsody Project Structure of SecSys_IA Model

Harmony for SE Deskbook | 98 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Design Synthesis

4.5.2.3.2 Configuring Realized Use Case Model Handoff

IBD_SecuritySystem)
As mentioned in Section 4.5.2.3 only a subset of the realized use case 1 itsSecuritySystom
Uc2ControlExit — i.e. the components (blocks) of the respective
system architecture - will be integrated into the SecSys_|IA model. For T 1 EEiEiien Pl el i
this purpose a specific handoff model needs to be configured. 1 itsAccessPoint 3|

1 itsCardReaderEntry

1 itsFingerprintScanner

Create a Harmony compliant project Uc2ControlExit_HandOff
IBD of the HandOff Model Uc2ControlExit_HandOff

Delete from Model
. ;
- RequirementsAnalysisPkg and R

]

t- 2 Components
- FunctionalAnalysisPkg B+ Packages _
=152 DesignSynthesisPkg
. . =0 Packages
Add to Model from the Rhapsody project Uc2ControlExit the =-§3 ArchitecturalDesignPkg
packages -2 Block Definition Diagrams
[+-(2 Blocks
- ActorPkg.sbs [#-CJ Internal Block Diagrams
. . =0 Packages
- ArchitecturalDesignPkg.sbs E1 ExecutionScopePkg

- InterfacesPkg =57 SecuritySystemDecompositionPkg
B%‘l Eckaqes

#-£7 CardReaderEntryPk
In the InterfacesPkg Delete from Model the packages H-5 Ca:dRﬁgdﬁﬁgﬂi‘t’B'kgg
Uc2_BB_InterfacesPkg and Uc2_WB_InterfacesPkg -6 FingerprintScannerPkg
-5 SecSysControllerPkg
. . H-E7 SecuritySystemWB_SD_Uc2
In the SecuritySystemDecompositionPkg Delete from Model the e}

53 ActorPkg
package SecuritySystemWB_AD_Uc2 E—J"%l_l

nterfacesPkg
22 Events
-7 reqReadSecurityCard()
In the IBD_SecuritySystem Delete from Model all ports and ¥ regProcessAlert(OMString AlertType)
connections - reqResetAlarm()
- reqUnlockAccessPoint()
- evAccessPointUnlocked()
- reglockAccessPoint()
- evAccessPointLocked()
- ¥ reqValidateSecurityCard()
- reqDisplayCardStatus(OMString CardStatus)
- regAlarm()
----- £ TypesPkg
- Profiles

@060 6 600

Rhapsody Project Structure of Uc2ControlExit_HandOff

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 99

Case Study: Design Synthesis

4.5.2.3.3 Integration of Realized Use Case

There are two concepts to integrate elements of two models

- Addition or replacement of model elements
(Rhapsody feature Add to Model) or

- Combination of model elements
(Rhapsody tool Diff/Merge)

Step 1: Add to Model Packages

The following packages of the Uc2ControlExit HandOff model are
integrated into the SecSys_I|A model using the Add to Model As Unit
feature:

- CardReaderEXxitPkg.sbs,

- SecSysControllerPkg.sbs,
- SecuritySystemWB_SD_Uc2.sbs,

Add to model from another project -ﬂ
From Project Uc2CantrolExit_HandOff C]
Unit Type All -]
File Name Type Fioot Element Path o SelectAll

IBD_SecuritySystern.std Stucture... DesignSynthesisP... CAU.
] &dd Suburits

SecuritySystemDecomp... Package DesignSynthesisP... CAU.
CardReaderEntryPkg.shs Package DeslgnSyntheswsP C\U.

|| 4dd Dependents

CardReaderExitPky.shs
FingerprintScannerPko ... Package = @JAS nit
() A reference
FunctionalAnalysisPk.s.. Package FunctionalAnalysi. CAU.
InterfacesPka.shs Packace InteracesPho CALL. A
oK] I Cancel] [Help
Add to Model

Package CardReaderExitPky already exists

Load with different name:
(@) Replace existing unit

(Do natload

ok | [Pepiaceall | [auitAddoMogel || Help

Add to Model

Package SecSysControllerPkg already exists

E@'l Load with different name: SECSWCDWU”EfPKGJmPDTd
‘:) Replace existing unit

() Do not load

ok | [Replaceall | | QuitAddioModel || Help

P& SecSvs 1A
-0 Components
2 Packages
=57 RequirementsAnalysisPkg
-0 Packages
+-57 RequirementsPkg
—-£7 DesignSynthesisPkg
-0 Packages
=-§3 ArchitecturalDesignPkg
- D Block Definition Diagrams
I -2 Blocks
- -3 Internal Block Diagrams
= Packages
#-§7 ExecutionScopePkg
=-57 SecuritySystemDecompositionPkg
=0 Packages
57 CardReaderEntryPkg
57 CardReaderExitPkg
-5 FingerprintScannerPkg
[EN] SecSysControllerPkg
. = Blocks
: -7 SecSysController
=7 SecSysControllerPkg_Import
=2 Blocks
- SecSysController_Import
SecuritySystemWB_SD_Ucl
#HE7 SecuritySystemWB_SD_Uc2

ml

‘U“

-5 ActorPkg
57 InterfacesPkg

----- £ TypesPkg
-3 Profiles

In the package SecSysController_Import rename of the block
SecSysController to SecSysController_Import

Harmony for SE Deskbook | 100

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Design Synthesis

Step 2: Merge Interfaces Packages

Interfaces packages of two models are merged by means of the
Rhapsody Diff/Merge tool.

Preparation:
Create a Rhapsody project with an empty InterfacesPkg.
Save the model as EmptyModel.

@ Launch Rhapsody Diff/Merge and from the menue select
File > Compare

Select files)

Files to compare

Lett side Rhapsody unit | Browse..

Right side Rhapsody unit
Compare with descendants

[Base-aware made

Base Phapsody unit Browse..

[0K J i Cancel]

Select as Left side Rhapsody unit the InterfacesPkg.sbs in the
Uc2ControlExit_HandOff model as

Select as Right side Rhapsody unit the InterfacesPkg.sbs in
the SecSys_IA model

Check the Base-aware check-box and select the
InterfacesPkg.sbs in the EmptyModel as Base Rhapsody Unit

Select files ==

Files to compare
JandOffJc2 ControlExit_HandOff_rpyAnterfacesPlkg.sbs
Right sicde Rhapsody unit welntegrated Systemarchitecture_rovdlnterfacesPkg.sbs

Compare with descendants

CROXO)

Left side Rhapsody unit

Bage-aware mods
Base Rhapsody unit

13-12EmptytodelEmptyModel_rpyiinterfacesPkg.she Browse...

Ok } [Cancel l

Check the differences: There shall only be elements (interfaces
and events) added or missing. If there are changes, they need
to be resolved manually before continuing.

¥

By |

@ Click the Start button to start the merge process:

DiffMerge

Do you want to automatically merge all trivial differences?

[Don't ask me again. Use my current reply as default,

| ves || wmno || concet |

Answer Yes to automatically merge all trivial differences. All
differences will be resolved automatically

From the menue select: File > Save merge as...
Overwrite the InterfacesPkg.sbs of the SecSys_IA model.

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Harmony for SE Deskbook | 101

Case Study: Design Synthesis

Step 3: Merge Blocks

&) SecSys [A
Operations, receptions and attributes of the block -0 Components
SecSysControllerimport are merged with the block = Eg;kaqes < AnalvsicPk
SecSysController by means of the SE-Toolkit feature Merge Blocks. il D:‘;;‘;;;';‘,;‘;‘},esi:;'k‘;‘" 9

=2 Packages
[=-§3 ArchitecturalDesignPkg
=3 Block Definition Diagrams

In the Tools Menu select T .83 BDD_SecuritySystem
Tools > SE-Tookit > Modeling Toolbox > General -2 Blocks

-0 Internal Block Diagrams

N
In the SecSysControllerPkg_lmport = ._E ‘Eﬁaj'c“;jj}ionmpepkg
select block SecSysController_Import =157 SecuritySystemDecompositionPkg
=0 Packages
In the Modeling Toolbox dialog box E E;‘::,’Eﬁ:.‘f:{ﬁ:{‘t'gg‘g
click Set Source F££3 FingerprintScannerPkg
B SecSysControllerPkg

| =2 Blocks
- -7 SecSysController
E| £ SecSysControllerPkg_Import

In the SecSysControllerPkg
select block SecSysController

. E1¢E Blocks
In the Modeling Toolbox dialog box S E Sec 'u,;"gcsf,‘;:ﬁ:,“,_‘.}g";,;m‘;"“ T
click Set Desination 50 SecuritySystemWB_SD_Uc2

57 ActorPkg

In the Modeling Toolbox dialog box D% -lr';,t:;?,i;spkg

click Merge Blocks

CXONOXOIONC

@Modeling Toolbox @

Options About

@_ Set Source Exit Set Destination 4@

block block
SecSysController_lmport SecSysContraller
I Hyperlink(s) Source: A Single Block or Multiple Blocks

Destination: A Single Block

o Anchor(z) Copies any Operations, Attributes and Event Receptions
from the Source Blocks to & Single Destination Block

| 5D Fel(s)

_| EweniReception(s)

o Walue Type

o Conveys

@7_.— Merge Blocks [Add Dependencies

General | Dependencies | Other | Generate SDs |

Harmony for SE Deskbook | 102 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Design Synthesis

Step 4: Create/update Ports and Interfaces

@ Right-click SecuritySystemWB_SD_Uc2 and select
The ports and interfaces of the SecSys_|A model are created/updated SE-Toolkit > CreatePorts And Interfaces.

by means of the SE Toolkit feature Create Ports And Interfaces
@ Manually add Delegation Ports and associated interfaces

NOTE: In the imported Sequence Diagram package update the lifeline

names and check the autorealization status of messages.
Manually connect ports
IBD_SecuritySystem)
1 its Security System
1 itsUser) 1 itsCardReaderExit 2 1 its Sec SysController 2 1 itsAccessPoint %

pCardReaderExit[]—[]_[I] pUser pSecSysController [lj—[] pCardReaderExit pAccessPoint [— ——] pSecSysController

1 itsCardReaderEntry 2| | 1 itsCamera e
pCardReaderEntry []—[]_[IJ pUser pSecSysController EIJ—[:I pCardReaderEntry pCamera []—[]—[Ij pSecSysController

1 itsFingerprintScanner 2| |1 itsAdmin by

pFingerprintScanner [I]—[]—[Ij pUser pSecSysController [I]—[Ij pFingerprintScanner pAdmin [I:I—[]—['lj Socs
p ysController

IBD of the updated SecSys_IA Model

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 103

Case Study: Design Synthesis

Step 5: Integrate Imported Block Statechart

Copy & paste the Statechart of the imported block into the Once the Statechart of the imported block is copied into the
Statechard of the merged block and make it a concurrent state. merged block statechart, Delete from Model the imported block
package.

I SecSysController I

!

SecSysControllerEntry_Ctrl

I WaitForEntryRequest H

reqValidate Se curityCard

I Se cSysControllerExit_Ctrl I I

I WaitForExitRequest H

(J
l reqValidate Se curityCard

| reqTakeSnapshot to pCamera > [ProcessingSe curityCardData]
CardValid Fail3Times el J
ProcessingSe curityCardData]
CardValid ScFail3Ti
T al'lmes Dé' J logExitData(); | reqAlarm >
ProcessingBiom etricData] /disable Us erAccount(); | reqProcessAlert("Exit Failure”) to pAdmin >
l Authenticated BsTimeout BsFail3Times o J logAccountData();
Idisable Us erAccount(); =
logA H
cohecountbata evAccessPointLocked reqResetalarm
I logEntryData();
reqResetAlarm
UnlockingAndLockingAccessPoint | reqAlarm to pCardReaderEntry > | < >

% v

reqProcessAlert("User Access Disabled") to pAdmin >

:

I WaitForRes etAlarm I

reqRes et;“arm (& checkForTimeLimitViolations{TimeLimitFlag); ‘J tmit_Update)

L

| reqResetAlarm to pCardReaderEntry > [TimeLimitFlag=false; Tl [TimeLimitFlag==true]

evAccessPointLocked reqProcessAlert{"TimeLimitViolation") to pAdmin >

‘ UnlockingAndLockingAccess Point WaitForRes etAlarm

Integrated State-based Behavior of Merged Block SecSysController

Harmony for SE Deskbook | 104 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Design Synthesis

Step 6: Refactor State-base Behavior
Statechart SecSysController_Ctrl Alternative 1
In the SecSysController_Exit_Ctrl Statechart and its Sub-

Statecharts update the Send Actions and change the label of the @ Differentiate between the Entry request and Exit request
connectors A and the EnterExit Points Fail3Times and CardValid.

SecSysControllerCtrl I

I SecSysControllerExit_Ctrl I I

!

SecSysControllerEntry_Ctrl

WaitForExitRequest ‘_-

reqValidateSecurityCard[IS_PORT(pCardReaderExit)]

I WaitForEntryRequest I‘_-

l reqValidateSecurityCard[IS_PORT(pCardReaderEntry)]

ProcessingSecurityCardData_Exit I

| reqTakeSnapshot to pCamera >

|
|
|
|
|
: |
|
|
|
|
|

CardValid_Exit Fail3Times_Exit o J
[ProcessingSecurityCardData_Entry]
l CardValid_Entry Fail3Times_Entry 3 J llogExitData(); | regAlarm to pCardReaderExit >
- - - r | reqProcessAlert("Exit Failure”) to pAdmin >
ProcessingBiometricData] /disableUserAccount();
l Authenticated BsTimeout BsFail3Times o3 J logAccountData(); ‘
UnlockingAndLockingAccessPoint WaitForResetAlarm I
IdisableUserAccount(); = J
logAccountData(); evAccessPointLocked reqResetAlarm
I logEntryData(); reqResetAlarm to pCardReaderExit >
UnlockingAndLockingAccessPoint | regAlarm to pCardReaderEntry >

] ‘ ‘ <

| reqProcessAlert("User Access Disabled") to pAdmin >

CheckingForTimelimitViolations (%)

I WaitForResetAlarm I

checkForTimeLimitViolations(TimeLimitFlag); ‘J tm(t_Update)

l reqResetAlarm

[TimeLimitFlag=false; tl [TimeLimitFlag==true]

| reqProcessAlert("TimeLimitViolation") to pAdmin >

evAccessPointLocked *

| reqResetAlarm to pCardReaderEntry > ‘
|

Refactored State-based Behavior of Block SecSysController (Alternative 1)

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 105

Case Study: Design Synthesis

Statechart SecSysControllerCtrl Alternative 2

An alternative strategy to refactor the integrated statebased behavior
of the SecSysController block is to manually merge the concurrent
processes SecSysControllerEntry_Ctrl and SecSysControllerExit_Ctrl.

| SecSysController_Ctrl |
/

WaitForEntryRequest

reqValidateSecurityCard

[IS_PORT(pCardReaderExit))/ [I1S_PORT(pCardReaderEntry))/
UserRequest="Exit"; UserRequest="Entry";
reqTakeSnapshot to pCamera >
ProcessingSecurityCardData_Entry]
llogExitData();

Fail3TimesExit

CardValidExit

FailT3TimesEntry

3

CardValidEntry

ProcessingBiometricData

LJ

| reqProcessAlert("Exit Failure”) to pAdmin >

Unlocki 4l ockingA
9

Authenticated BsTimeout BsFail3Times ks J
llogEntryData(); reqProcessAlert("User Access Disabled") to pAdmin >

oint

| B

WaitForResetAlarm

reqResetAlarm

UserRe quest=="Exit"
evAccessPointLocked [a 1 [else]

| reqResetAlarm to pCardReaderEntry >

| reqResetAlarm to pCardReaderExit >

CheckingForTimelimitViolations)

checkForTimeLimitViolations(TimeLimitFlag); :| tm(t_Update)

J
ITimeLimitFlag=false; Tl [TimeLimitFlag==true]

| reqProcessAlert("TimeLimitViolation") to pAdmin >

(.

ProcessingSecurityCardData_Entry

I IScFailCount=0;

ValidatingSecurityCard &)

ityCard(Car

[UserRequest=="Exit"] l [UserRequest=="Entry"]

| reqDisplayCardStatus(CardStatus) to pCardReaderEntry>

- ‘ [CardStatus=="Valid"]

[else] CardValidEntry

| reqDisplayCardStatus(CardStatus) to pCardReaderExit >

reqValidateSecurityCard

[CardStatus=="Valid"]

WaitForRequest

felse] CardValidExit

SecCardFailure 2]

flagSecurityCardFailure(ScFailCount);
[ScFailCount<3]

[else] ™

[UserReque:

=="Entry"] regAlarm to pCardReaderEntry >

[else]
IdisableUserAccount();
reqAlarm to pCardReaderExit > logAccountData();

IdisableUserAccount();

logAccountData();
Fail3TimesExit FailT3TimesEntry
\ J
(ProcessingBiometricData h
IBsFailCount=0;
| reqEnableBiometricScan to pFingerprintScanner >
WaitForBiometricScaninfo]
retAuthenticationStatus evBsTimeout BsTimeout
d"
[BsFailCount<3]
| reqDisableBiometricScan to pFingerprintScanner >
[else] | Authenticated 2
BiometricScanFailure [
flagBi icScanFailure(BsFailCount);
N) [BsFailCount=3]
reqDisableBiometri to pFingerpri >
| reqAl to pCardR y >
IdisableUserAccount();
BsFail3Times logAccountData();
. J

Harmony for SE Deskbook | 106

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Actor Behavor

The behavior of the actor User needs to extended w.r.t. the additional
request via the port pCardReaderExit.. The extension is performed by
meas of the TE-Toolkit feature Create Testbench.

Case Study: Design Synthesis

The state-based behavior of the actor block AccessPoint needs to be

updated graphically.

AccessPointCtrl

locked

reqUnlockAccessPoint
J
unlocking]

J

l tm(1000)

evAccessPointUnlocked to pSecSysController >

unlocked

le |

J

-
@ In the Internal Block Diagram IBD_SeuritySystem right-click the
User block and select SE-Toolkit > Create Test Bench. [
C
(20U 2SS 1 ulid evAccessPointLocked to pSecSysController
This Actor already has a Statechart. Please read the follwoing oprions T tm(1000)
carefully [locking]
Click Yes to add a new Statechart - the original will be retained. L 1
Click No to DELETE the existing Statechart and replace it with a new one. A
Click Cancel to back out. Nothing will be deleted or created
reqLockAccessPoint (
Yes No Cancel -
@ Select No
i Active @)

@ send_reqReadSecurityCardThruPortpCardReaderEntry/.. OPORT(pCardReaderEntry)->GEN(reqReadSecurityCard);
@ send_reqScanBiometricDataThruPortpFingerprintScanner/...OPORT(pFingerprintScanner)->GEN(reqScanBiometricData);
@ send_reqReadSecurityCardThruPortpCardReaderExit/...QPORT(pCardReaderExit)->GEN(reqgReadSecurityCard);

Extended Behavior of the Actor Block User

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Harmony for SE Deskbook | 107

Case Study: Design Synthesis

4.5.2.3.4 Verification of Use Cases Collaboration

(animated Statecharts and Sequence Diagrams).

The Co”aboraton of the merged realized use case mode|s in User :CardReader :CardReader :Finge rprint ‘ :SecSysController #dmin :AccessPoint Camerm
A . . Exit Entry Scanner

the Integrated System Architecture model is verified through

model execution on the basis of the captured use case 7 | | | |

scenarios. The correctness and completeness analysis is |Entry ¢ maReadSecuritfcam) | | |

based on the visual inspection of the model behavior | re sdSe curityCad) |

re gy alidate Secjlri'lyCa rd}

red]JsplayCardStah.ﬁJ(hlﬂS‘tatus Valid)

NOTE: The model verification should cover both alternative

reqlakeSnap
statecharts of the SecSysController block. i

Right-click the statechart and select Set As Main Behavior
and re-generate code.

P 1% [T [R e R T
50 SecSysControllerPkg
=2 Blocks
=7 SecSysController
= Attributes
2 Comments
£ Generalizations
Operations
-2 Standard Ports
=-(& Statecharts
[-(2) Refactored Statechart Alternative 1

[+-2) Refactored Statechart Alternatl\re 2
LP et by Qupt s 18R 1],

enable EﬁnmetricSr.lrﬂ

N

req ScanBiome trjcData ()

z

NN AN, \% SNSRI
R

)

503 nElinmetrithtaq

au‘hen‘tl:.ateElinmei*'l:Dah{ﬂ Li:herlu:.atélshtus A uthenfica ted)

\\g\\\
[
=

A

displayA uhenmt.Lnstamm Lmentmgmmatus A

P e R R A

reth uherlhcathiLh.l#uﬂmertmtnnB/{atus A mmﬁmq

leql:isTlle Biometric 5 ca
logEntryDataf)

N \\\\i\\\\\\\

disable Eli:lmetricSnr n{}

N

|

|

|

|

|

|

: | reglniochl coessP
|

I evicoe ssgfmnl..lnbnlnedn
|

|

|

|

\X }
\\\\\\\\\\ e N N R R R S NN

Exit

|
|
|
|
|
|
|
|
|
|
|
|
|
|
mql&adSecurllT‘alﬂﬂ |

|

|

| reqlockA coe sﬁPnlgj

| B ——
|

|

|

|

o S S R I

T | 2
readSecurlyCaTdﬂ | ;
7
red.'alidateSechity:amn | %
“
| | %
o . validate Secu rd 5tatus = V/hd]
SecSys_IA Verification | |] ! 2[’;
Animated Sequence Diagram reqD m%rdm+mmms= Valid) 2 Z
i -—|_-,.-|m"'\. \._.._,..LJ-H‘-“ --A.-n_.-—q_"’_,’_,_,—Lﬁ i ..A-HIDgE-‘!tTt:‘E ..m-{'- e AQ-W.] .

Harmony for SE Deskbook | 108 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Hand-Off to Subsystem Development

5 Hand-Off to Subsystem Development

In the Security System case study it was decided that the card readers
and the fingerprint scanner should be COTS components while the
SecSysController subsystem had to be developed. As outlined in
Section 2.2.4, the hand-off to the subsequent development is an
executable model derived from the baselined Integrated System
Architecture Model.

Create a Harmony compliant Rhapsody project and name it
SecSysController_HandOff

@ Delete from Model the
- FunctionalAnalysisPkg and
- UseCaseDiagramsPkg

@ Add to Model As unit from the SecSys_RA project the
RequirementsPkg.sbs

@ Add to Model As unit from the SecSys_IA project

- SecSysControllerPkg.sbs

- SecuritySystemWB_SD_Uc1.sbs
- SecuritySystemWB_SD_Uc2.sbs
- InterfacesPkg.sbs

@ As the interfaces will be re-generated in this workflow,
Delete from Model in the InterfacesPkg all interfaces.

@ Move the SecSysControllerPkg and the Sequence Diagram
packages into the DesignSymthesisPkg.

@ Manually add the following actors to the ActorPkg:

- Admin

- Camera

- AccessPoint

- CardReaderEntry

- CardReaderExit

- FingerprintScanner

Create a BDD_SecSysController and an IBD_SecSysController

BDD_SecSysControIIer)

CardReaderEntry

i

FingerprintScanner

CardReaderExit

1 1

«Block»
SecSysController

1 1 1 1

1 1 1 1

AccessPoint

©)

Admin

BDD of the SecSysController_HandOff Model

.
=

-0
g

B..

&) SecsysController HandOff

Components
1 Packages
57 RequirementsAnalysisPkg
=-£7 DesignSynthesisPkg
=0 Block Definition Diagrams
. =33 BDD_SecSysControler
-3 Internal Block Diagrams
[IBD_SecSysController
=0 Packages
=-£7 SecSysControllerPkg
¢ EE Blocks
: - SecSysController
[#-§7 ExectionScopePkg
-0 SecuritySystemWB_SD_Ucl
£ SecuritySystemWB_SD_Uc2
ctorPkg
Actars
i i Admin
[H- i Camera

[

[_]b
B

fp

=

[H- i AccessPoint

[H- iy CardReaderExit

=57 InterfacesPkg
| H-EE Events

- E‘J Typestg

3 Profiles

Project Structure of the SecSysController_HandOff Model

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Harmony for SE Deskbook | 109

Case Study: Hand-Off to Subsystem Development

SecSysControllerSc2)
Taking into consideration the new system scope, update the TITTYTTT: SecSyaConwolier YT
Sequence Diagrams in the packages Entry

- SecuritySystemWB_SD_Uc1 and
- SecuritySystemWB_SD_Uc2

NOTE: Do not forget to autorealize the message to the actors.

It is recommended to rename the updated Sequence Diagrams and to
move them into a new package (ref. below).

.

i BSOS et ®l T
B SecSysControIIerHandOff SD
—-[J Sequence Diagrams

ityCard(Car

qDisplayCardStatus(CardStatus)

|
< CardStatus=="Not Valid" >

flagSecurityCardFailure(ScFailCo

ScFailCount=3

disableUserAccount()

e

£

A TTTRTRITRRE NN

ANARSGERRRRERGERRRREERRRRRERRRNSRRRRNNSRRANRN NN

I.1 SecSysContralerScl HandOff ControlEntry Nominal logAccountData()
SecSysControlerSc2 HandOff ControlEntry Exception CardReaderEntry ;]
: 71 SecSysControlerSc3 HandOff ControlEntry Exception BiometricScan reqAlarm()
------ =/ SecSysControlerScd HandOff ControIE)ﬂt Mominal and Exceptlon | reqProcessAlert(AlertType)
O e e IR e hn I b b R gtk L reqResetAlarm(]
reqResetAlarm() N
SecSysControllerSc1 J ‘
:CardReader :SecSysController :Fingerprint :AccessPoint :Camera
Entry Scanner
reqValidateSecurityCard() ‘ 2 SecSysControllerSc3)
' reqTakeS hot() 7 :CardReader :SecSysController :Fingerprint :Admin
vaIidateSecurityCard(CardStétus) Entry Scanner

reqPisplayCardStatus(CardStatus) |

CardStatus=="Valid"

‘ EnableBiometricScan()
| "

tAuth Auth

r
N

AuthenticationStatus==
"Authenticated"

‘ reqDisableBiometricScan()
\ logEntryData()

reqUnlockAccessPoint()
I

red

ked()

t Unl

3

regLockAccessPoint()
[

)
|

.

evAcc ointLocked()/

A RN
ARERRNRNRNRNNN

ANARRRARE AR R AR AR R AR RR AR R AR R AR AR RSRRARRR AR SRRRRARRRN
NNNNNSNNNNLAANNNGEIANNNNNNNNNNNNNN \\\\\\\\\\\\

AuthenticationStatus==
"Not Authenticated”

flagBiometricScanFailure (BsFailCount)

BsFailCount=3

| reqDisableBiometricScan()
disable UserAccount()

logAccountData()

1s(Autl

AT NN ‘\\\

A AR
ASEARRRGRARARARERRRRARRRRRARARARRRRARRSSRRAN SRRARNNNRRNN

E reqAlarm()
‘ reqProcessAlert(AlertType)
.,,,ResetAlarm()/
eqResetAlarm() ;
< ‘ Z
7z
7
7
7z
7
‘ Z
7

Harmony for SE Deskbook | 110

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Hand-Off to Subsystem Development

Based on the updated Sequence Diagrams, create ports and | SecSysController_c | N
interfaces by means of the respective SE-Toolkit feature.

reqValidateSecurityCard

[IS_PORT(pCardReaderExit))/ [IS_PORT(pCardReaderEntry))

@ Capture by means of the SE-Toolkit feature Create Testbench.

the behavior of the actor blocks UserRequest="Exit" UsarRequest="Entry";

- CardReader Entry | reqTakeSnapshot to pCamera >

- FingerprintScanner l

- Cal’d ReaderEXit ProcessingSecurityCardData]

- ggmiﬂ}ztrator llogExitData() CardValidxit Fail3TimesExit
FailT3TimesEntry

The state-based behavior of the actor block AccessPoint CardValidEntry o

describe graphically (ref. SecSys_|A).

ProcessingBiometricData]

Authenticated BsTlmeout BsFail3Times % J

pSecSysController

IBD_SecSysController)
1 itsSecSysController |reqProcesAIert("ExitFailure")topAdmin >
llogEntryData(); |

reqProcessAlert("User Access Disabled") to pAdmin >

7] pCardReaderEntry 1 itsCamera 3 | Unl Point

)
pCamera [pSecSysController l
itsCardReaderEntry

pSecSysController

WaitForResetAlarm

reqResetAlarm

UserRe quest=="Exit"
evAccesgPointLocked r q 1 [else]

| reqResetAlarm to pCardReaderEntry >

] pFingerprintScanner 1 itsAccessPoint 3|

pAccessPoint [[_{ l pSecSysController reqResetAlarm to pCardReaderExit >
itsFingerprintScanner *

pSecSysController

. 1 itsAdmin 3
] pCardReaderExit — CheckingForTimelimitViolations)

pAdmin [}—— l pSecSysController checkForTimeLimitViolations(TimeLimitFlag); tm(t_Update)
itsCardReaderExit C

[TimeLimitFlag=false Tl [TimeLimitFlag==true]

reqProcessAlert("TimeLimitViolation") to pAdmin >

Populated IBD of the SecSysController_HandOff Model
State-based Behavior of the SecSysController_HandOff Model.
For Sub-Statecharts refer to the IA Model (Section 4.5.2.3)
@ Verify the SecSysController_HandOff model through model
execution

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 111

Case Study: Hand-Off to Subsystem Development

Systems Requirements Coverage of the SecSysController_HandOff Model

NOTE: The table below was generated by means of the Rational Publishing Engine (RPE)

ID System Requirement Req_llj_;;:;nent Satisfied by

SYS1 Three Attempts On Employee ID Entry Functional ScFailCount
Upon entry the user shall be allowed three attempts on card identification. flagSecurityCardFailure

SYS2 Three Attempts On Biometric Data Entry Functional BsFailCount
Upon entry the user shall be allowed three biometric data entries. flagBiometricScanFailure
Disabling User Account

SYS3 After three failed attempts at card identification or biometric data entry the Functional disableUserAccount
user account shall be disabled.
Denied Entry Notification logAccountData

SYS4 Any denied access attempt shall be logged and account details sent to the | Functional logEntryData
administrator. regProcessAlert
Out of Date Cards . . .

SYS5 Out of date cards shall deny entry and invalidate the card. Functional validateSecurityCard
Authorization of Security Card — Entry .

SYS6 Access to the secure area shall only be allowed with a valid security card. Functional CardStatus
Two Independent Security Checks .

SYS7 Secure areas shall be protected by two independent security checks. Functional SecSysController
Alarm - Entry .

SYS8 On a denied entry an alarm signal shall be raised. Functional reqAlarm
Employee ID Card Identification — Entry . . .

SYS9 Entry shall be protected by a security check based upon employee ID. Functional validateSecurityCard
Visualization of Security Card Check Status — Entry

SYS10 | The user shall be visually informed about the status of his/her ID card Functional reqgDisplayCardStatus
check.
Security Card Information

SYS11 | Security cards only contain the employee name and ID and will be Functional validateSecurityCard
renewed yearly.
Visualization of Biometric Data Check Status

SYS12 | The user shall be visually informed about the status of his/her biometric Functional retAuthenticationStatus
data check.
Approval of Biometric Data

SYS13 | The user shall not be allowed access unless his/her biometric data are Functional AuthenticationStatus
recognized.
Biometric Scan

SYS14 | Entry to the secure areas shall be protected by a second independent Functional reqgEnableBiometricScan
security check, based upon biometric data.
Image Capture

SYS15 | Animage shall be taken of any person, at the initial attempt, when trying to | Functional reqTakeSnapshot
access a secure area.

Harmony for SE Deskbook | 112

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Hand-Off to Subsystem Development

System Requirements Coverage of the SecSysController_HandOff Model (cont’d)

Requirement

ID System Requirement Type Satisfied by
Three Attempts On Employee ID Exit . . .
SYs16 Upon exit the user shall be allowed three attempts on card identification. Functional flagSecurityCardFailure
Three Attempts On Employee ID Exit . .)
SYs16 Upon exit the user shall be allowed three attempts on card identification. Functional flagSecurityCardFailure
Time Limit Violation
SYS17 An alarm shall notify if a person stays longer than 10 hours in the secure Functional checkForTimeLimitViolations
area.
Denied Exit Notification logExitData
SYS18 The administrator shall be notified about any denied exit. The notification Functional 9
.) reqProcessAlert
shall include user account details.
Alarm - Exit .
SYS19 On a denied exit an alarm signal shall be raised. Functional reqAlarm
Employee ID Card Identification — Exit . . .
SYS20 Exit shall be protected by a security check based upon employee ID. Functional validateSecurityCard
Visualization of Security Card Check Status — Exit
SYS21 The user shall be visually informed about the status of his/her ID card Functional reqDisplayCardStatus
check.
Authorization of Security Card — Exit
SYS24 The user shall not be allowed to exit until the security card has been Functional CardStatus
successfully authorized.
Entry Time Non-
SYS25 The user shall be given sufficient time to enter the secure area. Functional t Unlocked
Time Between Two Independent Checks Non-
SYS26 The time between the two independent security checks shall not exceed a . evBsTimeout
) f Functional
configurable period.
SYS27 Processing User Request i Non- SecSysController
The system shall only process one user at a time. Functional
Biometric Data Storage Non-
SYS28 Biometric data shall be stored in the system database and not on the . SecSysController
- Functional
security card.
SYS29 Time Recording Non- SecSysController
The time a user spends in a secure area shall be recorded. Functional logExitData
Exit Time Non-
SYS30 The user shall be given sufficient time to exit the secure area. Functional SecSysController
Automatic Securing the Secure Area — Entry
SYS31 Once the user has entered the secure area the system shall automatically | Functional evAccessPointLocked
secure itself.
Automatic Securing the Secure Area — Exit
SYS32 Once the user has exited the secure area the system shall automatically Functional evAccessPointLocked
secure itself.
Configuration of Entry and Exit Time Non-
SYS33 The time to enter and exit the secure area shall be customizable. Functional SecSysController

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 113

Case Study: Hand-Off to Subsystem Development

Verification of the SecSysController_HandOff Model through Model Execution

Animated SecSysControIIerModeIVerification)

:CardReader :CardReader :Fingerprint :SecSysController :Admin :AccessPoint :Camera
Entry Exit Scanner

Exit, Exception reqValidate SecufityCard()

SANNN

validaleSecurityCard(Caf Status = Not Vali

NNNNNNNN
NNNNN

reqDisplayCardStatus(GardStatus = Not Valid)

NN

flagSecurityCardFailure{ScFailCount = 2)

disableUserAccount()

logAccountData()

reqProcessAlert(AlertTyge = Exit Failure)

AUERATTRNNNNN

‘ reqResetAlarm()

i

reqResetAlarm()

A AN

N

Entry rquaIidaheSet./ rityCard()

reqTakeSnapshot()
curityCard(C

-XAANARNANARRNNANASNN

Status = Valid)

A A TR R TR

N3

qDisplayCardSt:
re

s(CardStatus = Valid)
ableBi can()

uthenticated)

reqDisableBiometricScan()

logEntryData()

E]UnlockAccessPoint() 7

‘ evAccgésPointUnlocked()

reqLockAccessPoint() ;

:
4
SNRRRRARRERRANARRRR

N\

AN

evAc//pesPointLocked)

A AT e

|

ANNRANN
AN\ NRRNN

NOTE:
Timeout events intentionally are
not shown in this diagram.

ANEGEERRRREERRRREERRRREERRRRRERRRRREERRRREERRRREEENL RRERRRRRRERRRRSRRRNRRRRRRNRSRRNNRNRRNNNN
ANSERRREERRRRSERRRRRERRRRREERRRREERRRREERRRRSEERRRRE GRRRRRRRRRRRERRRRR SRR SRRRRNRRRRRNNNN

ANERRREERARRRRERRRRRRRRRRRRRRARRRRRRARN LSRR NNNRNNN

ASSRRRRRRRRARRSRRRRRRRRARNNRARNEA RN SONNNN

Harmony for SE Deskbook | 114 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Appendix

6 Appendix
A1 Modeling Guidelines

This chapter specifies the guidelines and best practices to model a system using SysML. These guidelines are a symbiosis of many years of
modeling experience in different industry branches (Aerospace, Defense, Automotive, Telecom, Medical, Industrial Automation, and Consumer
Electronics) and have been proven to significantly enhance the readability and communication of model-based specifications.

It starts with general guidelines and drawing conventions. SysML diagrams that are considered essential and associated elements then are
discussed in detail. Finally, an approach which extends the SysML profile for project-specific needs is described.

A1.1 General Guidelines and Drawing Conventions

The following guidelines and drawing conventions are recommended for all diagrams:

e Create simple, focused diagrams with a small number of elements.

As a rule of thumb, avoid placing more than ten major elements e Organize diagrams in a hierarchical fashion. Locate diagrams in
(block, use case, actor, etc.) on a diagram. packages corresponding to their relative position in the system
hierarchy.

e Ensure all diagrams can be printed on standard 8.5x11 or A4
paper. e Ensure accurate and complete descriptions are entered for all
model elements to assist in understanding the model and to
facilitate the eventual hand-off of the model. These descriptions
must also support the auto-generated documentation from the
o Create elements with a consistent size. Avoid clutter and chaos by model.
arranging elements with equidistant spacing and alignment.

e Arrange elements in diagrams to avoid crossing of lines. All lines
should be straight or rectilinear.

¢ Avoid excessive use of description notes in diagrams. It's generally

e The default Rhapsody fonts, shapes, symbols, line styles, and recommended to put these descriptions in the description field of
colors shall be used consistently in all packages in the model. the corresponding graphical artifact
 Position related elements close together in diagrams. » Do not use comments in the model.

e Ensure elements in diagrams have the same level of abstraction.

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 115

Appendix

A1.2 Use Case Diagram

Use Case Diagrams capture the functional requirements of a system
by describing interactions between users of the system and the
system itself. Users of a given system could be external people or
other systems. A use case diagram is comprised of a system
boundary that contains a set of use cases. Actors lie outside of the
system boundary and are bound to use cases via associations.

Elements and Artifacts

o Use Case: A use case defines the system context. Name use
cases using verbs that describe their ultimate goal.

:‘!?QActor: A role that an external user plays with respect to the
system. Note that external users could be people or other systems.
Use domain-specific, role-based names for actors.

System Boundary: Distinguishes the border between the actors
and the system containing the use cases.

n Association: Connects an actor with a use case, indicating which
actors carry out which use cases.

b Dependency: Connects two use cases, indicating which use
cases depend on other use cases. For simplicity, only the
<<include>> stereotype should be used for use case dependencies.
Other stereotypes, like <<extend>>, should be avoided.

UCD_SecuritySystem)
o o
Security System /@]
User Camera
(@) ()
Admin AccessPoint

Use Case Diagram

Guidelines and Drawing Conventions

o A system typically has many use cases. To manage this
complexity, group use cases into Use Case Diagrams.

e Ensure each use case has a clear goal and that its functionality
falls within the bounds of the system. Keep the goal broad enough
to break the use case down into several scenarios (rule of thumb:
5<n<25 “sunny day scenarios”).

o Every actor in a use case diagram must be associated with one or
more use cases. Every use case must be directly associated with
at least one actor

Naming Conventions

e When multiple use case diagrams are defined, use case diagrams
shall be numbered: UCD<Nr> <Use Case Diagram Name>

o When multiple use case diagrams are defined, the name of a use
case shall include the reference to its associated use case
diagram: UCD<Nr>_UC<Nr> <Use Case Name>.

o Note: Use case names may have spaces

e The use case name shall start with a verb.

Harmony for SE Deskbook | 116

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

A1.3 Block Definition Diagram

The SysML Block Definition Diagram shows the basic structural
elements (blocks) and their relationships / dependencies. Basic
structural elements may be actors and subsytems or interfaces.

Elements and Artifacts

& Block: An entity that can contain data and behavior. A system
block may be decomposed into sub-blocks. A system block is a re-
usable design element.

ﬁ: Actor: A role that an external user plays with respect to the
system. Note: This element is not shown in the Rhapsody toolbar. The
actor needs to be defined in the browser (-> ActorsPkg) and then
dragged into the block definition diagram.

¥ Interface: A contract comprised of event receptions and/or
operations. In Harmony for Systems Engineering an interface only
contains event receptions. Any system block that realizes the interface
must fulfill that contract. An interface does not contain behavior.

n Association: Represents a bidirectional relationship between
system blocks and actors.

Directed Association: Represents a uni-directional relationship
between system blocks and actors.

b Directed Composition: Shows the hierarchical decomposition of
a system block into its sub-blocks.

T Generalization: Shows the relationship between a more general
system block and a more specific system block. The more specific
system block is fully consistent with the more general system block
and contains additional information or behavior.

4 Dependency: Shows the relationship between two system blocks

in which one block requires the presence of another block.

Appendix

BDD_SecuritySystem J
o o
AN «Block» | 1
Security System
User Camera
o o
1 1] 11 1
Admin 0 AccessPoint
_ a1
CardReaderEntry FingerprintScanner
A 1 «Block»
< SecSysController
CardReaderExit

Block Definition Diagram

Guidelines and Drawing Conventions

o Use the Label feature on the Display Options to keep block names
simple within block definition diagrams, even when they are
referencing blocks across packages.

¢ Blocks should not show attributes, operations and ports.

o Use the composition relationship to show block decomposition — do
not show blocks inside other blocks.

e The stick figure should only be used to visualize actors that are
external to the system.

Naming Conventions

The name of a block definition diagram should have the pre-fix
“BDD_".

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Harmony for SE Deskbook | 117

Appendix

A1.4 Internal Block Diagram

The SysML Internal Block Diagram shows the realization of the system
structure defined in the Block Definition Diagram. It is comprised of a
set of nested parts (i.e. instances of the blocks) that are inter-
connected via ports and connectors.

Elements and Artifacts

]
StandardPort: A named interaction point assigned to a block,
through which instances of this block can exchange messages.

@ | FlowPort: specifies the input and output items that may flow
between a block and its environment. Input and output items may
include data as well as physical entities, such as fluids, solids, gases,
and energy.

= Connector: A connection between two ports through which
information flows via interfaces. When two parts share the same
parent part, the connection between the two blocks is modeled
with a single connector. However, when two parts have different
parents, the connection between the two parts requires multiple
connectors routed through delegation ports.

IBD_SecuritySystem_Extended)

1 itsSecuritySystem
1 CardReader Entry) 1 itsSecSysController o)

pSecSysController

1 itsUser B
pUser_Entry LED1_Entry:tLED
pCardReader_Entry 1 [1 pUser LED2_Entry:tLED g5
pCardReader_Exit Alarm_Entry:bool [¢
pFingerprintScanner|
U CardReader Exit =

pSecSysController
pUser_Exit

+———————1 pUser LED1_Exit:LED

LED2_Exit:tLED

pCardReader_Entry

LED1_Entry:tLED
LED2_Entry:tLED

L i o
Alarm_Entry:bool itsAccessPoint

pAccessPoint

pAccessPoint []—[)—[’] pSecSysController

Alarm_Exit:bool g

1 itsFingerprintScanner)

pUser_FpScan
{1 ﬁ] pUser pSecSysController

{ 1 pFingerprintScanner

1 B
pCardReader_Exit pCamera
pCamera []—D—ﬁ] pSecSysController
LED1_Exit:tLED
LED2_Exit:tLED . l 1 itsAdmin
pAdmin
Alarm_Exit:bool pAdMIN[}———

)—é’] pSecSysController

Internal Block Diagram

Harmony for SE Deskbook | 118

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Appendix

Guidelines and Drawing Conventions

e Show part decomposition by placing sub parts inside of their
owning part.

e When possible, try to arrange parts in a vertical fashion. Also, try
to place ports that communicate outside of the system tier on the
left side of the block and ports that communicate within the system
tier on the right side of the block.

o Use the Label feature on the Display Options to keep part names
simple within internal block diagrams, even when they are
referencing parts or system blocks across packages.

e Depending on the level of detail you are trying to convey in the
diagram, you may hide or show attributes, and operations. All
communication between parts occurs through ports and well
defined interfaces.

o Depending on the level of detail you are trying to convey in a
specific diagram, you may hide the pictograms of port interfaces
(lollipop/socket) to avoid clutter.

e Avoid creating “gigantic” internal block diagrams that show all port
connections between every part in the system, as these diagrams
quickly become over-cluttered and unreadable. Instead create
separate internal block diagrams with a mission focussed on
showing a specific collaboration or part decomposition.

Naming Conventions

e The name of an internal block diagram should have the pre-fix
“IBD_".

e Parts should keep the default name (its<BlockName) created by
Rhapsody. Only in use case models, the actor instance names
should refer to the use case: (Ucd<Nr>_) Uc<Nr>A_<ActorName>.

e Naming convention for ports: p<CounterpartName>
¢ Port names should be placed inside the associated part.

e |Interface names should be referenced to the sender port.
Naming convention: i<Sender>_<Receiver>

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 119

Appendix

A1.5 Activity Diagram

The Activity Diagram describes a workflow, business process, or
algorithm by decomposing the flow of execution into a set of actions
and sub activities. An activity diagram can be a simple linear
sequence of actions or it can be a complex series of parallel actions
with conditional branching and concurrency. Swim lanes can be
added to the activity diagram to indicate the entities responsible for
performing each activity.

NOTE: In Harmony for Systems Engineering the terms activity, action
and operation are synonymous.

Elements and Artifacts

- Action: An action represents a primitive operation. In Harmony
for Systems Engineering also actions stereotyped
<<MessageAction>> are used. These actions contain only messages
to and/or from an actor.

& Subactivity: A subactivity that is further decomposed into a set
of actions and subactivities.

NOTE: It is recommended not to use subactivities. A decomposed
subactivity cannot partitioned into swim lanes. If a decomposed sub
activity needs to be partitioned into swim lanes (ref. architectural
design) the parent action should be decomposed using a Call
Behavior action.

CH Call Behavior: References to another activity diagram as an
activity.

> Control Flow: Actions are linked via control flow. Execution
begins in an activity when a transition flows into it. A transition from
an activity fires when the activity has completed and any guard
conditions on the transition have been met.

~ Initial Flow: A control flow that leads to the initial action in
the activity diagram.

¥ Fork Node: A compound control flow that connects a single
control flow to multiple concurrent activities.

¥ Join Node: A compound control flow that merges the control
flow from multiple concurrent activities.

5
@ Merge Node: Routes each input received to the output. Unlike
the Join Node it does not require tokens on all its inputs before
offering them on its output flow.

Swim Lane Frame: Draws a frame around the entire set of
activitie so that they can be partitioned into swim lanes.

[Swim Lane Divider: Places a vertical partition within the swim
lane frame. Each swim lane represents an entity that is responsible
for performing the activities in that swim lane. Control flows can cross
swim lanes.

Decision Node: A condition connector splits a single control flow
into multiple branches, each containing a guard. The guards on each
branch should be orthogonal conditions, though they do not need to
cover all possibilities. An “else” guard should be added to provide a
default branch when no other guards are met.

® Activity Final: Terminates the control flow of the activity
diagram.

@ Diagram Connector: A diagram connector helps manage
diagram complexity by allowing jumping to different sections of the
activity diagram to avoid line crossing.

Action Pin: In SysML the Input/Output shows the input data of
an action. In Harmony for Systems Engineering action pins -
stereotyped <<ActorPin>> - are used to depict the link between an
action and an actor. In this case the name of the pin has the name of
the associated actor. The arrow in the pin shows the direction of the
respective link (i.e. In or Out). Do not use combined In/Out pins.

Harmony for SE Deskbook | 120

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

«Block» CardReaderExit

«Block» SecSysController

User A

| []
read SecurityCard)——.(vaidateﬁecumy(:ard)

displayCardStatus

&

&

checkF orTimeLimitViolations

Admin [Time LimitFlag==true]
[¥]

[Card Status==Valid]

[else]

flagSecurityCardFailure

[ScFailCount3]

Admin

[
«MessageActions
reqProcessAkrt
2]

resetAlarm I

logExitData

AccessPoint

«MessageActions

L reqResetAlorm J

Lreq’Unincl'AcmssPoii! J

AccessPoint

AccessPoint

[«Messageactions

— - Z
1 g

L evAccessPointinbcked J

AccessPoint

[s]
aMessageActions
evAccessPointLocked

Activity Diagram

Guidelines and Drawing Conventions

Appendix

When performing an operational decomposition of a complex
system, the activities at one system tier can become the use cases
in the next lower system tier.

Activity diagrams should flow vertically from top to bottom. The
initial action should be located near the top of the diagram and any
termination states should be located near the bottom of the
diagram.

Use the statechart action language to express guards to provide
the best transition to statechart diagrams. See the appendix A3A6
for more details on Rhapsody’s action language.

All control flow lines should be rectilinear or straight. Control flows
should not cross each other or cross through activities.

Diagram connectors should only be used when the readability of an
activity diagram is disturbed by a direct control flow.

Control flows and initial flows cannot have triggers.

To reference another activity diagram as an action, drag that
activity diagram from the browser onto the diagram. This creates a
call behavior action that links to the external activity diagram.

Generally, an action should correspond to an operation to be
performed in the associated block. Exception: Actions stereotyped
<<Message Action>> which describe the reception or transmittion
of a message, e.g.

«Blocks $51

iaMessageActions op2
reqOp2

«Blocks $52 wBlocks 553

In Harmony for Systems Engineering, the activity diagram is used
exclusively to describe the functional flow through a use case.
Therefore, select the activity diagram mode “’Analysis”.

Document the pre-conditions in the respective tag of the diagram.

Actor swim lanes should not be used. The link of an activity to the
actor should be described through action pins, stereotyped
<<ActorPIN>>>

1551 552 1553

[opt | \
Fﬂ | |
req0p2) . | |

\ reqOp2) -

\ | ;i—ff’
\ |

| | |

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Harmony for SE Deskbook | 121

Appendix

NOTE: In the case of a message exchange with external actors Naming Conventions

respective actor pins need to be added to the message action, e.g.
e The diagram shall have the associated use case name in plain text

at the top of the diagram.

AccessPoint

[F] e Activity names shall start with a verb, beginning with a lover case
letter, and map directly to the names of operations on system

reqUnbckd ccessPoint b |OCkS

AccessPoint AccessPoint

[#]
e
reqLockAcce ssPoint evAccessPointUnbcked

AccessPoint

«MessageActions
evAccessPointlocked
:SecSysController :AccessPoint

‘ reqUnlockAccessPoint() ;

t_Unlocked | evAccesPointUnIocked(f%

B Z

Z

| reqLockAccessPoint()

\/ evAccessPointLocked(f %

< &

Z

Z

Z

| Z

L 7

o All actions should have only one exit transition. Any scenarios
where multiple transitions flow out of an action should be explicitly
drawn using a condition connector or a fork node.

Harmony for SE Deskbook | 122 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Appendix

A1.6 Sequence Diagram Elements and Artifacts
Sequence Diagrams elaborate on requirements specified in use cases
and activity diagrams by showing how actors and blocks collaborate in +T+

some behavior. A sequence diagram represents one or more Instance Line: Draws a vertical lifeline for an actor or

scenarios through a use case. block.

A sequence diagram is comprised of vertical lifelines for the actors and
blocks along with an ordered set of messages passed between these
entities over a period of time.

Message: Creates a horizontal message line between two
lifelines or looped back onto the same lifeline. All messages
between blocks are considered asynchronous. Reflexive (loop
back) messages are considered synchronous operations and
Uc1_HomingAndManualMode represent simple, private activities within the block.

moveAxisB_Sc1 J m

8

L .
—— | Condition Mark: Represents a mode/state change in a
oS e Axis selocted block. Can also be used to specify preconditions and post
conditions for each instance on the sequence diagram.

reqSetDirection(Direction) ‘

setDirection(Direction) I

Time Interval: An annotation on a lifeline that identifies a

time constraint between two points in the scenario.

reqSetSpeed(Speed)

A RRRARARARA TR RRARRRRRRAAR AR NGRS RRARARNRNNNN

setSpeed(Speed) = Interaction Occurrence (Reference Sequence Diagram):
S rackPosAXISGD Helps manage scenario complexity by cross-referencing other
B sequence diagrams.
opt [AxisC inSafePos] E]
checkPosAxisE() Interaction Operator: Helps to group related elements in
a sequence diagram. This includes the option of defining specific
op axieE nSatepod conditions under which each group of elements will occur.
2 :}_h_elckstatusAxisB() %
7 Operand Separator: Used to create subgroups of
[AxisB i+omed] interaction operators (e.g. concurrent operations or alternatives).
7 reqMoveAxisB()
7 mvCmddAxisB_Normal() % . . o o '
7 tl Partition Line: Used to divide a scenario into sections of
7 o1se] ‘ related messages. Each partition line has its own text field used
7 reqMoveAxisB() ‘ to describe that section of the scenario.
% mvCmddAxisB_Slow()
Z
Constraint: A semantic condition or restriction expressed
7 \ as text.

Sequence Diagram

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 123

Appendix

Guidelines and Drawing Conventions

Pre- and post-conditions should be documented in condition marks
on respective lifelines or in respective tags of the diagram.

If possible, arrange lifelines such that the message exchange
occurs in a “general’ left-to-right flow from the top of the sequence
down to the bottom. In other words, arrange the order of lifelines to
minimize message zigzagging.

For documentation reasons the print-out of a scenario should be
captured on one page.

Divide complicated scenarios into manageable, well-documented,
logically related groups of messages using partition lines.

Interaction Operators should not be nested deeper than 3 hierarchy
levels.

Extract reused portions of scenarios into separate sequence
diagrams that are included using interaction occurrences.

All message lines should be horizontal, rather than diagonal.
Asynchronous messages between blocks have an open arrowhead
and synchronous, reflexive messages have a filled arrowhead.

Stereotype messages according to their associated protocol
(e.g- M1553, Ethernet, etc ...).

Use the statechart diagram action language to express constraints
to provide the best transition to statechart diagrams.
See the appendix A6 for more details on Rhapsody’s action
language.

If a condition mark represents a mode/state change in reaction to a
respective message, the condition mark should match the name of
the state in the statechart diagram.

Do not show operations on the actor lifelines.

Do not use timeout in a sequence diagram. Rather describe a time
constraint by means of Time Intervals.

Naming Conventions

The following table

summarizes the recommended naming

conventions for asynchronous messages:

Name

Description

req<Service>

Used to request a service (operation) on a
block. These messages are followed by a
reflexive message on the receiving block
indicating the execution of the service.

Example: reqReadSecurityCard

The corresponding reflexive message
name excludes the “req” prefix and begins
with a lower case letter:

Example: readSecurityCard

ret<Service>Status

Used to provide results of a service
(operation) back to the requester.

Example:
retAuthenticateBiometricDataStatus

ev<Event>

Used to send a notification of change

Example: evAccessPointLocked

Harmony for SE Deskbook | 124

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

A1.7 Statechart Diagram

A Statechart Diagram shows the state-based behavior of a block
across many scenarios. It is comprised of a set of states joined by
transitions and various connectors. An event may trigger a transition
from one state to another. Actions can be performed on transitions
and on state entry/exit. See the appendix for more details on
Rhapsody’s action language.

Classically, a statechart diagram depicts the behavior of reactive
blocks — that is, blocks that maintain their history over time and react
to events. However, when modeling a system, the behavior of blocks
is always captured in statechart diagrams backed by supporting
attributes and operations, as all communication between blocks occurs
through ports using asynchronous events.

Elements and Artifacts

- State: A state typically models a period of time during the life of a

block while it is performing an activity or waiting for some event to
occur. States can also be used to model a set of related values in a
block. A state that contains multiple sub states is called an “or” state
or composite state. A state that contains two or more concurrent
regions is called an “and” state or orthogonal state. Actions can be
performed on state entry and exit.

> Transition: A transition from a state defines the response of a
block in that state to an event. Transitions may flow through one or
more connectors (defined below) and ultimately route to a new state or
loop back to the original state. Transitions can have actions and
guards that make them conditional.

~ Default Transition: A transition that leads to the state (or the sub
state in an “or” state or “and” state) that should be entered by default.

0

And Line: Used to create an “and” state by dividing a state into
multiple orthogonal, concurrent regions.

¥ Fork Synch Bar: A compound transition that connects a single
transition to multiple orthogonal destinations.

Appendix

52 Join Synch Bar: A compound transition that merges transitions
from different orthogonal states.

© Condition Connector: A condition connector splits a single
transition into multiple branches, each with a guard. The guards on
each branch should be orthogonal conditions, though they do not
need to cover all possibilities. An “else” guard can be added to
provide a default branch when no other guards are met.

@ History Connector: A history connector is placed in an “or”
state to remember its last active sub state. When the “or” state is re-
entered, it automatically returns to that sub state. The transition
coming out of the history connector is the default transition taken
when there is no history.

Termination Connector: A termination connector destroys the
block.

Junction Connector: A junction connector helps manage
diagram complexity by combining several incoming transitions into a
single outgoing transition.

@ Diagram Connector: A diagram connector helps manage
diagram complexity by allowing jumping to different sections of the
statechart diagram to avoid line crossing.

@ EnterExit Point: A connector that links transitions across
statechart diagrams.

Send Action State: Graphical representation of a send signal
action.

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Harmony for SE Deskbook | 125

Uc2Control ExitCtrl
ExitControl

._4 WaitForExitRequest 147 A
(J

reqReadSecurityCard/
readSecurityCard();
A 4

J

‘ ProcessingSecurityCardData

‘ Fail3Times o&'/ ‘
[CardStatus=="Valid")/
v logExitData();
‘ UnlockingAndLockingAccessPoint ‘
reqProcessAlert("Exit Failure") to pAdmin
| s
¢ reqResetAlarm/ + evAccessPointLocked
[WaitForResetAlarm l resetAlarm(); . A
(J g

TimeLimitMonitor

CheckingForTimelimitViolations (%)

*—> checkForTimeLimitViolations(TimeLimitFlag);

ITimeLimitFlag=0; ﬂ [TimeLimitFlag==1]

reqProcessAlert("TimeLimitViolation") to pAdmin

Statechart Diagram

Guidelines and Drawing Conventions

If possible, Statechart diagrams should flow vertically from top to
bottom. The initial state should be located near the top of the
diagram and any termination connectors should be located near
the bottom of the diagram.

Typically, all states should have at least one entry transition and at
least one exit transition. A “dead end” state should be a very rare
thing!

Avoid nesting of states beyond 3 or 4 levels.
nesting is simplified with sub state diagrams.

Ensure complex

All transition lines should be rectilinear or straight. Transitions

should not cross each other or cross through states.

Labels should be positioned on the left-hand side of the arrow
direction.

ProcessingSecurityCardData

7

IScFailCount=0

r

ValidatingSecurityCardData @ W

EvalidateSecurityCard(CardStatus);...dispIayCardStatus(CardStatus); J

¢ [CardStatus=="Not Valid"]
(. R
reqReadSecurityCard/ SecCardFailure el
readSecurityCard(); \:flagSecurityCard Failure(ScFailCount);
WaitForEntryRequest lg A\ [ScFailCount>3]

C »(
lelse] =~ Fail:mme§>

For readability reasons, use Mealy syntax (event [condition]/action
on transition) wherever possible. Always place the action on a
transition on a new line from the event and guard.

Moore syntax (= action on entry, reaction in state) should be
avoided unless necessary. This feature allows a block to react to
events within a state without actually leaving that state via a
transition. Exceptions to this rule include
¢ protocol state machines for actors that respond to an input
with a specific output,
e message routing state machines that forward requests from
one subsystem to another subsystem, and
¢ actions in action states (ref Appendix A4).

Never use “action on exit”.

Diagram Connectors should only be used when the readability of a
statechart diagram is disturbed by a direct transition.

It is essential that the EnterExit Points connectors have meaningful
names and the two charts that are connected can be shown side
by side, with the connecting transition being easily identifiable.
Using similar positions of the connector on each chart may facilitate
this.

Harmony for SE Deskbook | 126

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Naming Conventions

o State names should be verbs and indicate the current mode or
condition of the block. Typically names are in the present tense.
Names must be unique among sibling states and should never be
the same as the name of a block or an event.

e Avoid names like “idle” or “wait”.

A1.8 Profiles

A profile extends the UML/SysML with domain-specific tags and
stereotypes. It also allows certain tool-specific properties to be
overridden to support modeling in a specific domain. These
customizations can be applied to the entire model or to specific model
elements.

Exemplarily Tab. A1-2 shows the properties of a project-specific profile
that supports the modeling guidelines outlined in the previous
sections. Tab. A71-1 depicts the definition of element tags that was
added to the profile in order to support the documentation.

Tag Applicable To Type

Use Case
Sequence Diagram String
Primitive Operation

PreCondition

Use Case
Sequence Diagram String
Primitive Operation

PostCondition

Use Case
Constraint Sequence Diagram String
Primitive Operation

Tab. A1-1 Project-Specific Tags Defined in a Profile

Appendix

Property

Value

Activity_diagram>Transition>line_style

rectilinear_arrows

Activity_diagram>DefaultTransition>line_style

straight_arrows

Statechart>Transition>line_style

rectilinear_arrows

Statechart>DefaultTransition>line_style

straight_arrows

Statechart>CompState>ShowCompName

false

SequenceDiagram>General>HorizontalMessageType

Event

SequenceDiagram>General>SelfMessageType

PrimitiveOperation

SequenceDiagram>General>ShowwAnimStateMark false

ObjectModelGe>Actor>ShowName Name_only
ObjectModelGe>Class>ShowName Name_only
ObjectModelGe>Object>ShowName Name_only

ObjectModelGe>Inheritance>line_style

rectilinear_arrows

ObjectModelGe>Depends=>line_style

rectilinear_arrows

ObjectModelGe>Class>ShowPorts false
ObjectModelGe>Class>ShowPortsInterfaces false
UseCaseGe>Actor>ShowName Name_only
UseCaseGe>UseCase>ShowName Name_only

Tab. A1-2 Project-Specific Properties Defined in a Profile

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Harmony for SE Deskbook

| 127

Appendix

A2 Deriving a Statechart Diagram

This guideline describes how to derive state-based behavior from the
information captured in an activity diagram and associated sequence
diagrams. The steps are detailed using as an example the simplified
use case Uc2ControlExit.

Fig. A2-1 depicts the black-box activity diagram of the use case
Uc2Control Exit. It describes the functional flow of the use case by
decomposing the flow of execution into a set of actions joined by
transitions and condition connectors.

Uc2ControlExitBBView J

User

readSecurityCard
validateSecurityCard
displayCardStatus

[CardStatus==Valid]

logExitData

AccessPoint

[l
«MessageAction»
reqUnlockAccessPoint

AccessPoint

«MessageAction»
evAccessPointUnlocked

AccessPoint [Timeout Unlocked]

«MessageAction»
reqLockAccessPoint

AccessPoint

[else]

flagSecurityCardFailure

[ScFailCount<3] Admin

[
«MessageAction»
reqProcessAlert

resetAlarm

«MessageAction»

evAccessPointLocked

Fig. A2-1 Use Case Uc2_ControlExit Black-Box Activity Diagram

Fig. A2-2 shows the black-box sequence diagram that was generated
from the black-box activity diagram by means of the Rhapsody SE
Toolkit feature Create New Scenario From Activity Diagram. The
information from the activity diagram and its associated sequence
diagrams will be used to identify and capture the state-based system
behavior in a statechart diagram.

BB_Uc2Sc1)

:User :Uc_Uc2ControlExit :Admin :AccessPoint

'/_reqReadSecurityCard()

|

ANRRRRRHERREEERERARRRRRE SRRARN A SASA SN SR NARNNN

readSecurityCard()

validateSecurityCard(CardStatus)

isplayCardStatus(CardStatus)
alt [CardStatus=="Not Valid"]

flaaS .

yCardFail (ilCount)
< ScFailCount==3 >

reqProcessAlert(AlertType)
alarm()

]

setAlarm()

[r

reqResetAlarm()

[CardStatus=="Valid"]
logExitData()

ANRRR AR ARARERARERARARRRRARRRRATA SRR RN RRNRANNN

reqUnlockAccessPoint()
¢ Unlocked evAccessP intUnIocked(f/

ANN
N

@ regLockAccessPoint()

evAcc#PointLocked(4

AN A A A A A A AN

NN NRNRANN
AN\ NN RNANN

Fig. A2-2 Use Case Scenario Sc1 derived from BB-Activity Diagram

Harmony for SE Deskbook | 128

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Step1: Identify Wait States and Action States
Step 1.1: Identify Wait States

In a Wait State an object waits for an event to happen. It consumes
time while waiting for the event.

In the use case black-box activity diagram identify actions with IN actor
pins. In the use case black-box sequence diagrams (Fig. A2-2) identify
the messages (receptions) that trigger the selected actions. For each
of the identified actions create in the statechart diagram a wait state
named WaitFor<ReceptionName>.

In cases where the use case black-box sequence diagram shows a
timeout event (Fig. A2-2: t Unlocked)), create in the statechart
diagram a wait state with a name that describes the actual system
status (Fig. A2-3: AccessPointUnlocked).

Ue? _ControlExitCtrl

[WaitFor_reqReadSecurityCard]

[WaitFor_reqResetAlarm]
& ry

[WaitFor_euAccessPointUnI-)cke(l]
L J

[WaitFor_evAccessPointLocked]
& ry

[AccessPointUnlocked]

Fig. A2-3 Wait States of Uc2_ControlExit

Appendix

Step 1.2: Identify Action States

An action state is a state whose purpose is to execute an entry action,
after which it takes a completion transition to another state. It is a kind
of dummy state that is useful for organizing state machines into logical
structures.

In the use case black-box activity diagram identify actions with multiple
outgoing completions with guard conditions. For each of these actions
create in the statechart diagram an action state with the name of the
action (naming convention: <ActionName>ing) and allocate the
relevant action to it using MOORE syntax.

NOTE: Besides the output-relevant action, an action-state may also
have additional context-related actions allocated to it (Fig. A2-4: action
state ValidatingSecurityCard).

j Uc2_ControlExitCtrl

Validating SecurityCard 2

“gvalidateSecurityCard(CardStatus);...displayCardStatus(CardStatus);

[CardStatus=="Pass™] é [else]

-

FlagingSecurityCardFailure (%)
"t FlagSecurityCardFailure(ScFailCount);

L. iy

[ScFailCount==3] é [else]

Fig. A2-4 Action States of Uc2 ControlExit

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Harmony for SE Deskbook | 129

Appendix

Step 2: Connect States
Step 2.1: Identify the initial state
Mark the initial state with a Default Connector. If attributes need to be

initialized (e.g. ScFailCount in Fig. A2-5), add respective actions to the
default connector.

Ue2_ControlExitCtrl

reqResetAlarm/
1ScFailC ount=0; resetAlarm;

evAccessPointl ocked/ ScFailCount=0:

ScFailCount=0; [

| WaitFor_reqReadSecurityCard 7‘4

| -

reqReadSecurityCard/
read SecurityCard();

Validating SecurityCard &5

“x, validate Se curityCard (CardStatus);...displayCard Status(CardStatus);

)'\ [else]

[Card Status=="Pass"]/ @
logExitData();

Flaging SecurityCardFailure @')

reqUnleckAccessPoint to pAccessPoint

‘EflagSecuritycardFaiIure[ScFaiICuunt);

[WaitFor_evAccessPointUnlocked] [else]
L
¢ evAccessPointUnlocked [ScFailCount==3]/
larm(};
[AccessPointUnlocked] akrmi)
I 1 reqProcessAlert("Exit Failure") to pAdmin

l' tm(t_Unlocked)

reqlLockAccessPoint to pAccessPoint [

! L J

WaitFor_evAccessPointLocked]
[)

WaitFor_reqResetAlarm

Fig. A2-5 Flat Statechart of Uc2_ControlExit
(Sequence for CardStatus ==“Pass”)

Step 2.2: Identify transitions, triggering events,
and associated actions

The transitions between the states and associated triggering events —
including guarded condition(s) - are identified through analysis of the
captured use case sequence diagrams.

Select a use case scenario. Replicate the scenario in the statechart
diagram:

Start from the initial state. In the sequence diagram identify the event
and — if needed — guarded condition(s) that trigger a transition and the
associated action(s). In the statechart diagram identify the target
state. Connect the two states. Label the transition following MEALEY
syntax: Event [Condition] / Action. If the target state is an action
state, add to the transition label only those actions that are not
allocated to the state. Proceed in the sequence diagram and repeat
the outlined connecting steps in the statechart diagram.

Repeat the replication of scenarios in the statechart for all captured
scenarios.

Step 2.3: Execute the Statechart

Verify the correctness of the captured state-based behavior through

model execution using the black-box use case scenarios as the basis
for respective stimuli.

Harmony for SE Deskbook | 130

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Step 3: Structure the Statechart hierarchically
Step 3.1: Identify state hierarchies

Once the flat statechart is verified, look for ways to structure it
hierarchically. Identify states that can be aggregated. Grouping
criteria could be e.g.

e System modes
e System phases or
e Reuse of state patterns

Also look for situations where the aggregation of state transitions
simplifies the statechart. Inspection of the flat statechart Error!
Reference source not found. reveals that

- ValidatingSecurityCard,
- FlagingSecurityCardFailure, and
- WaitFor_reqReadSecurityCard in the case of a card failure

can be considered sub-states of a composite state called
ProcessingSecurityCard (Fig. A2-6). As ScFailCount is a local
attribute, its initialization is added to the default entry of the composite
state. Furthermore, the substates FlagingSecurityCardFailure and
WaitFor_reqReadSecurityCard can be aggregated in the composite
state ValidationFail, thus denoting the fail mode within the
ProcessingSecurityCard state.

(ProcessingSecurityCard

/ScFailCount=0

(ValidatingSecurityCard &

“r,validateSecurityCard(CardStatus);...displayCardStatus (CardStatus);

[
reqReadSecurityCard/
readSecurityCard();

(ValidationFail

[CardStatus=="Fail"]

$

FlagingSecurityCardFailure (c:_vJ]

"1, flagSecurityCardFailure(ScFailCount);

[ScFailCount==3]/
[WaitFor_reqReadSecurityCard % alarm(); P
: ? [eled] Fail3Times

Appendix

Fig. A2-6 Composite State ProcessingCardData

Note the different transitions out of the composite state. In the case of
CardStatus=="Pass” the triggering condition and associated action is
captured in the top-level statechart (Fig. A2-5) as a high-level interrupt.
In the case of a third-time failure, the respective triggering condition
and associated action is captured within the ProcessingSecurityCard
state and linked to the top-level statechart via an EnterExit Point
(Fail3Times).

UnlockingAndLockingAccessPoint

!

reqUnlockAccessPoint to pAccessPoint

!

[WaitForAccessPoi Feedback |
C J

? evAccessPointUnlocked
reqLockAccessPoint to pAccessPoint

T tm(t_Unlocked)

AccessPointUnlocked W

T

Fig. A2-7 Composite State UnlockingAndLockingAccessPoint

States in the flat statechart Fig. A2-5, that relate to the access point
control can be aggregated into the composite state
UnlockingAndLockingAccessPoint, as shown in Fig. A2-7. This state
includes the messages sent to the access point.

Furthermore, the states WaitFor_evAccessPointUnlocked and
WaitFor_evAccessPointLocked can be merged to one wait state called
WaitForAccessPointFeedback. The exit out of the composite state is
captured in the top-level statechart.

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Harmony for SE Deskbook | 131

Appendix

Fig. A2-8 shows the final structure of the top-level statechart of the use
case Uc2ControlExit.

- Uc2_ControlExitCtrl

[WaitFor_reqReadSecurityCard ¢ A

[]
reqReadSecurityCard/
readSecurityCard();

[ProcessingSecurityCard |

Fail3Times o ’

reqProcessAlert("Exit Failure”) to pAdmin >

¢ [CardStatus=="Pass"]/
logExitData();

[WaitFor_reqResetAlarm]
[]

(UnlockingAndLockingAccessPoint |

[2

¢ evAccessPointLocked
A

reqResetAlarm/
resetAlarm

L

Fig. A2-8 Top-Level Statechart of Uc2ControlExit

Step 3.2: Execute the Statechart

Verify the correctness of the captured state-based behavior through
model execution using the black-box use case scenarios as the basis

for respective stimuli.

Harmony for SE Deskbook | 132

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

A3 Usage of Activity Diagram Information in the SE Workflow

Activity Diagram:

alignGun2GP5

The Activity Diagram is similar to the classic flow
chart. It describes a workflow or algorithm by
decomposing the flow of execution into a set of
actions and sub activities joined by transitions and
various connectors. These actions and sub-
activities are called activity nodes. An activity
diagram can be a simple linear sequence of actions
or it can be a complex series of parallel actions with
conditional branching and concurrency.

The example shows the sequence of actions
associated with the alignment of a gun to the Line of
Sight (LoS).

Sequence Diagram:

:Uc_AcquireTgt

| moveGP 5()

In Harmony for Systems Engineering an action is
the equivalent of an operation.

Using the SE-Toolkit feature Create New Scenario
from Activity Diagram, the sequence of actions is
translated into a respective sequence of (auto
realized) operations in a Sequence Diagram.

EnGunHSPS{}
|
|
Statechart Diagram: In the Statechart Diagram, the sequence of actions /
operations typically is associated with a state
transition. Notation: Event[Condition] / Action(s).
Ig:’,;ﬁ?;?,ﬁggps” In the example the triggering event is the default

[GunAlianed]

entry into the state GunAligned.

Reuse of the UML/SyML Activity Node Information

Appendix

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Harmony for SE Deskbook | 133

Activity Diagram:

Gunner

CalculateLosCmd
alignGun2GP $

Harmony for Systems Engineering uses a SysML
activity pin stereotyped <<ActorPin>> to visualize
the interaction of an action/operation with the
environment. The name of the pin is the name of
the associated actor, the arrow in the pin shows the
direction of the link (input and/or output)

In the example the action calculateLosCmd was
added. This action will be initiated by the gunner.
The triggering event will be defined in the Sequence
Diagram (below).

Sequence Diagram:

:Gunner

:Uc_AcquireTgt

reqCalculateLosCmd() - |
1

TN

calculateLosCmd()
moveGP5()

]

alignGun2GP 5()

The example shows the Sequence Diagram
generated by means of the SE-Toolkit feature
Create New Scenario from Activity Diagram. Based
on the information from the pin and the requested
operation, this feature creates an auto realized
message (reqCalculateLosCmd) from the gunner.

Statechart Diagram:

!

[WaitForGunnerlnput]
| |

reqCalculateLosCmd/
calculateLosCmd();
moveGP 5();
alignGun2GP (),

GunAligned]

—

Activity nodes with input ActorPin(s) are translated
into Wait States named WaitFor...

NOTE: It is highly recommended to standardize the
naming of Wait States.

Typically, the triggering event initiates a state
transition.
Notation: Triggering Event / Operation(s).

Reuse of Activity Node with ActorPins Information (cont’d)

Harmony for SE Deskbook | 134

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Activity Diagram:
Gunner Cmdr
[¥l [

fon. Action:

L evEngagePalms J

[evEngagePalms |

[Plam==Cmdr]

Gunner
[2]

CalculateLosCmd

alignGun2GP5

[Palm==Gunner]

Harmony for Systems Engineering uses
UML/SysML actions stereotyped
<<MessageAction>> to describe in an Activity
Diagram incoming messages that trigger a system
mode switch, provide requested data or send
messages. If the message is related to an actor,
the sender / recipient of the message needs to be
denoted by a respective ActorPin.

Sequence Diagram:

:Cmdr :Gunner :Uc_AcquireTgt
I
alt J; f evEngagePalms:Palmg |
— _5_ g
% evEngagePalms[Palﬁ}_ |
e “ I
alt J;/ % [Palm=="Gunner"] l
4 f reqCaIcuIateLosCmdl}_:
% % calculatel osCmady()
“ “
“ o
4 %
A “ moveGPS5()
“ “
“ -
Z z
“ = alignGun2GPS()
“ “
“ =
Z Z
G
s .

The example shows the Sequence Diagram
created from the Activity Diagram above by
means of the SE-Toolkit feature Create New
Scenario from Activity Diagram .

NOTE: The Interaction Operators and Operant
Separators were added manually.

Statechart Diagram:

WaitForPalmsEngaged

evEngagePalms

- [params->Palms=="Cmdr"] CmdrinCtrl

[params-=Palms=="Gunner"]

[

GunnerinCtrl |

WaitForGunnerinput

reqCalculateLosCmd/
calculateLosCmd();
moveGP5();

5 alignGun2GP5(),

GunAligned

H

Message Actions with input ActorPins are
translated into Wait States named WaitFor...
Typically, the triggering event initiates a system
mode change.

In the example the initial state was considered a
WaitForPalmsEngaged state. Once the gunner
engaged his palms, he was in control of the
system.

Reuse of Message Action Information (cont’d)

Appendix

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Harmony for SE Deskbook | 135

Appendix

A6 Rhapsody Action Language

This section provides a brief introduction to the action language applied
in the Rhapsody tool.

Basic Syntax

The language is case sensitive. That is, “evmove” is different from
“‘evMove”. Each statement must end with a semi-colon.

All names must start with a letter and cannot contain spaces. Special
characters are not permitted in names, except for underscores (_).
However, a name should never start with an underscore.

The following words are reserved and should not be used for names:
asm, auto, break, case, catch, char, class, const, continue, default,
delete, do, double, else, enum, extern, float, for, friend, GEN, goto, id,
if, inline, int, IS_IN, IS _PORT, long, new, operator, OPORT,
OUT_PORT, params, private, protected, public, register, return, short,
signed, sizeof, static, struct, switch, template, this, throw, try, typedef,
union, unsigned, virtual, void, volatile, while.

Assignment and Arithmetic Operators

X=1 (Sets X equal to 1)

X=Y (Sets X equal to Y)

X=X+5 (Adds 5 to X)

X=X-3 (Subtracts 3 from X)

X=X*4 (Multiplies X by 4)

X=X/2 (Divides X by 2)

X=X%5 (Sets X to the remainder of X divided by 5)
X++ (Increments X by 1)

X-- (Decrements X by 1)

Printing

The “cout” operator prints to the screen. Elements to be printed are
separated by the “<<” operator. Text strings are surrounded by double
quotes. Attributes are referenced using their names. The “endl”
operator prints a carriage return. So, to print out the current value of
X, use the following command:

cout << “The value of X is “ << X << end|;

If the current value of X is 5, this statement prints the following
message on the screen:

The value of X is 5

Comparison Operators

X==5 (X equal to 5)

X1=5 (X not equal to 5)

X<3 (X less than 3)

X<=3 (X less than or equal to 3)

X>4 (X greater than 4)

X>=4 (X greater than or equal to 4)

X>2 && X<7 (X greater than 2 and X less than 7
X<2 || X==7 (X less than 2 or X equal to 7)

Harmony for SE Deskbook | 136

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Conditional Statements

Conditional statements begin with the keyword “if” followed by a
conditional expression in parenthesis, followed by the statement to
execute if the condition evaluates to true. You can optionally add the
“else” keyword to execute a statement if the condition evaluates to
false. The “else” clause can contain another nested “if’ statement as
well. For example:

if (X<=10)
X++;
else
X=0;

Multiple statements can be grouped together by placing them in curly
braces.

if (X<=10)
{
X++;
cout << “The value of X is ” << X << endl;

}

else
{
X=0;
cout << “Finished” << end;

}

Incremental Looping Statements

Incremental looping is accomplished using the “for” statement. It
holds three sections separated by semicolons to specify: 1) an
initialization statement, 2) a conditional expression, and 3) an
increment statement. For example, to iteratively set the value of X
from 0 to 10 while printing out its value:

for (X=0; X<=10; X++)
cout << X << end|;

Appendix

Conditional Looping Statements

The “while” statement is used for conditional looping. This statement
has a single conditional expression and iterates so long as it evaluates
to true. The previous example could be implemented using a “while”
statement as follows:

X=0;
while(X<=10)
{

cout << X << endl;
X++;

}

Invoking Operations

To invoke an operation on a block, use the operation name followed
by parenthesis. For example, to invoke the “go” operation:

go();

If an operation takes parameters, place them in a comma-separated
list. For example, to invoke the “min” operation with two parameters:

min(X,Y);

Generating Events

The “OUT_PORT” and “GEN” keywords are used to generate events
through ports. For example, to send an event named “evStart” out the
port named “p2”, issue the following statement:

OUT_PORT(p2)->GEN(evStart);

To generate an event with parameters, place them into a comma-
separated list. For example, to generate an event named “evMove”
with two parameters for velocity and direction:

OUT_PORT(p2)->GEN(evMove(10,2));
NOTE: The “OPORT” keyword can be used in place of “OUT_PORT".

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Harmony for SE Deskbook | 137

Appendix

Referring to Event Parameters in Transitions

The “params” keyword followed by the “->” operator is used to
reference the parameters of the event that caused the current
transition. For example, if an event named “evMove” has a parameter
named “velocity”’, that parameter can be referenced using “params-
>velocity”. This syntax can also be embedded in statements within the
action on the transition. For example:

if (params->velocity <= 5)

Testing the Port on which an Event Arrives

The “IS_PORT” keyword is used to test whether the event that caused
the current transition arrived through a specific port. For example:

if IS_PORT(p2))...

Testing the State of a State Machine

The “IS_IN” keyword is used to test whether a state machine is in a
specific state. For example, to test whether the state machine of a
block is in a state called “Accelerating”:

if (IS_IN(Accelerating))

Harmony for SE Deskbook | 138

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Appendix

A5 Change Request-driven System Design Approach

The chance for systems engineers to be involved in the design of a completely new system is rare. Mostly, systems engineers have to deal with
modifications or extensions of an existing (legacy) system. Typically, the changes are based on requirements specified in form of textual Change
Requests (CR). Although accompanied by descriptive documents such as Concepts of Operations (CONOPS), further analysis is needed to assess
the impact of change requests on the existing system architecture.

This section describes by means of a generic example, a model-based change request-driven system design approach aimed at the early validation
of customer requirements by means of executable models.

Essentially, the outlined workflow follows the MbSE workflow documented in the previous paragraphs. The only essential difference is the hand-off to
the subsequent subsystem development teams, i.e. to HW, SW and Test. As in this case the executable Change Request (CR) System Architecture
Model only defines the allocation of change request related functional/non-functional requirements to the legacy system architecture Configuration
Items (CI), the resulting impact on respective Cls has to be elaborated by the Integrate Product Team (IPT) as a follow-up activity.

The benefits of the Change Request-driven System Design approach are:

- Improved understanding of customer requirements up-front in the system design and
- Support of system impact analysis in order to allow early submission of Change Proposals.

Requirements Analysis

The requirements of the generic change request are grouped in two
use cases (CR_Uc1, CR_Uc2). Fig.A5-1 depicts the resulting use
case diagram.

NOTE: The association between the legacy system Cls and the use
case have to be unidirectional.

UCD_ChangeRequest)

ChangeRequest

o)

o) Cl11_Legacy o

— T

Cl22_Legacy A2

Fig.A5-1 Use Case Diagram of the Change Request Case Study

Functional Analysis

The functional flow of each use case is captured in a black-box activity
diagram (Fig.A5-2).

NOTE: The "use case story” must be self-contained. It may include
functionality that is implemented in the legacy system. In the later
design phase (ref. “Hand-off to the Integrated Product Team”)
respective redundancies will be filtered out.

Following the functional analysis workflow, use case black-box
scenarios are derived from the respective use case black-box activity
diagram. These scenarios are the basis from which use case block
ports and interfaces were defined. Eventually, based on the
information from the activity diagram and the sequence diagrams, the
state-based behavior of the use case block is captured in a statechart
diagram. Each use case model is then verified through model
execution.

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Harmony for SE Deskbook | 139

AD_CR_Uc1BlackBox]

«MessageActionn
reqSetMode

= op31

Cl22_Legacy
[op32] E{ 0p33
a2

!

!

"

Al

Fig.A5-2 Black-Box Activity Diagrams of Use Cases
CR_Uc1 and CR_Uc2

Architectural Analysis

The objective of the Architectural Analysis phase — also referred to as
the Trade Study phase — is to elaborate an architectural concept that
best satisfies the CR related set of functional and performance
requirements. In collaboration with the Integrated Product Team (IPT),
different architectural concepts are evaluated based upon a set of
criteria that are weighted according to their relative importance. It is
beyond the scope of this section to go into details of the trade study.

The lowest level of architectural decomposition to be captured in the
CR system architecture model is the node level — also referred to as
configuration item (CI) level (Fig.A5-3).

NOTE: The CR system structure captures only the “delta”
architecture, i.e. those Cls that are involved in the design process
either as actors in the use cases (Cl11, Cl22) or as a location for the
change request (CI211). CI3 was added to the legacy system
architecture as an additional component.

At the lowest level a Cl consists of a legacy (black-box) part.
Optionally, this Cl will contain the allocated change request related
functional/non-functional requirements.

Ci2 ci3

CI211_Legacy

CI211_CR

Fig.A5-3 Case Study: CR System Architecture
Architectural Design

Harmony for SE Deskbook | 140

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Fig.A5-4 shows the workflow and the associated artifacts in the CR
related Architectural Design phase. Two types of models are created
in this phase:

- the Realized CR Use Case Model(s) and
- the CR System Architecture Model.

The Realized CR Use Case Model is the white-box view of the use
case model that was created in the previous Functional Analysis
phase. The CR System Architecture Model is the aggregate of all
Realized CR Use Case Models.

Fig.A5-5 and Fig.A5-6 show the created SysML artifacts in the case
study.

NOTE: For readability reasons, the names of the delegation ports are
not shown in the IBDs.

Once the correctness and completeness of the realized CR use case
models are verified through model execution, they are merged in the
common CR System Architecture Model. Fig.A5-7 shows the BDD
and IBD of this model. The collaboration of the different realized CR
use case models is verified through model execution on the basis of
the previously captured UC white-box sequence diagrams.

Appendix

CR Architectural Design

y

Realize CR Use Case Model

!

Decompose UC Block Structure Diagram

[} Realized CR UC
(BDD,IBD)
AIIocate Realized CR UC
System-Level Operatlons to Cls White-Box AD
Deﬂve Realized CR UC
UC White-Box Sequence Diagrams | white-Box SDs
Deﬂne
Cl Blocks Ports and Interfaces
Define Realized CR UC
Cl Blocks State-| Based Behavior Statechart Diagrams
Verlfy
Realized CR UC Model
Allocate/Link
Non-Functional Requirements

5

[Next Use Case] %se]

Merge
Realized CR UC Models

I

Verify
CR System Architecture Model

Fig.A5-4 Workflow in the Architectural Design Phase

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Harmony for SE Deskbook

| 141

Appendix

Cl11_Legacy

o e

BDD_CR Ucl)
1 Q
1 1 «Block»
SuD CR
Al L
«Block» «Block» «Block»
cn ci2 ci3
[4
«Blocks |
ClI3_CR Uct
«Blocks «Blocks
ci ci21
«Blocks 1}
CI11_L
—-egacy «Blocks»
ci211
«Block» “&| .1 «Blocks
CI211_CR_Uec1 CI211_Legacy
AD_CR_Uc1WhiteBox]
:CI211_CR_Uc1 :CI3_CR_Uct
— «MessageAction»
Al | reqSetMode M

IBD_CR_Uc1

1

itsSuD

1 itsCl11_Legacy ‘=

pUc_CR_Uct

1 itsCi211_Legacy

1 itsCI211_CR Uc1°&.|

pCI1_Legacy [j_rn_[‘]—m—
PEI3_CR_Uet D—?—D—[‘]—

itsCI3

1 jtsCI3_CR_Ucl °a1|

pCIZ11_CR_Uct D—E}—
1 I
pAal ['I:‘ R

1 itsAl B

]_[Hpma_cre_um

Fig.A5-5 Realized Use Case Model CR_Uc1

Harmony for SE Deskbook | 142

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Appendix

wBlocks
CI3_CR_Uc2

E

BDD_CR_Uc2]
o o]
1 1 «Blocks 1 1
qlr]_ SuD_CR —ﬁIF
Al 1 A2
«Blocks «Block»
CI2 CI3
! 4
«Blocks «Blocks
ci21 Ci22 1
4
«Blockx»
«Blocks CI22_Legacy
ciz1n
[
«BlocKs
Cl11_Legacy
«Blocks F 4
CI211_CR_Uc2

AD_CR_Uc2WhiteBox)

CI211

_CR_Uic?

:CI3_CR_Ue2

Cl22_Legacy

0p32

[C1=true]

IBD_CR_Uc2)

1

itsSul

itsCI2

itsCI21

itsCI211

1

1

itsCI211_CR_Uc2 &

itsCI211_L egacy

pCIZ_CR_Ucz
pCIZZ_Legacy

itsCI22

i}

itsCI2? legacy "=

pCizi1_cr_U=z |

1

L

1oiteAl B

pCla_CR_Us2

1oitsA2 B

,_

pClE_CR_Ue2

L

Fig.A5-6 Realized Use Case Model CR_Uc2

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Harmony for SE Deskbook | 143

IBD_CR_SystemArchitecture)

«Blocks %
CI3_CR_Uct

BDD_CR_SystemArchitecture)
o
1 1 «Block»
SuD CR
A1 4
\|/1 1 \|/1
«Blockx» «Blocks «Block»
cn ciz ci3
L [
1 1
«Block» «Block» «Blocks
ci ci21 cizz
1
«Block» & aBlocks
CH1_Legacy “Blockn CI22_Legacy
ci21
4
«Block» % 1
CI211_CR_Uct 1 Blocks
CI211_Legacy
«Blocks 3| 1
CI211_CR_Uc2

«Blocks
CI3_CR_Uc2

Fig.A5-7 CR System Architecture Model

1

itsSub CR

1

itsCi211

1

1 itsCi211 Legacy
1 itsCl211 CR Uc' &

itsCI211 CR Uci

PCH1_Legacy
pCIE_CR Ued

pCIs_CR_Uc2
pCl2Z_Legacy

itsCI22

4

itsCl22 Legacy

itsCI3

1 #tsCI3 CR Uc2 B

1 itsCI3 CR Uc1l 3
P

pCIZ11_CR_Ue2 —[E—
&

pA
pad |

pCI211_CR_Uel T

il

1 itsh2 =

{ b | pCIE_CR_Uc2
|

pCIZ_CR_Uet

Harmony for SE Deskbook | 144

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

A commonly used artifact for the documentation of the communication
in a network is the N-squared (N?) chart. In an N? chart, the basic
nodes of communication are located on the diagonal, resulting in an
NxN matrix for a set of N nodes. For a given node, all outputs (SysML
required interfaces) are located in the row of that node and inputs
(SysML provided interfaces) are in the column of that node. Fig.A5-8
depicts the N? chart of the CR system architecture elaborated in the
case study.

NOTE: In the N? chart the SuD_CR colum/row describes the logical
system-level interfaces.

CHM1 | iCM1_Legacy Ue CR_Uct

iCI211_CR_Ucl_CI3_CR_Uc
iCI211_CR_Ug2_CI3_CR_Uc2

ci211

i0122_Legacy_CI211_CR_Uc2| CI22

iCI3_CR_Uel_CI211_CR_Ugl

o iCI3_CR_Us_Al
iCI3_CR_Uc2 CI211_CR_Uc2
i42_CI3_CR_Uc2
- Sub_CR iCI3_CR_Uct A
i41_CI3_CR_Ucl

i42_Cl3 cR_Uc2| A2

iA1_Cl3_CR_Uct At

Fig.A5-8 N? Chart of the Case Study CR System Architecture

Appendix

Hand-off to the Integrated Product Team

In this case study, the level of the architectural decomposition and
associated requirements allocation is the Cl-level. This constraint
defines the hand-off to the subsequent hardware/software
development. As outlined in the previous paragraphs, each CI at the
lowest level of the CR System Architecture Model consists of a black-
box legacy part and (optionally) of a change request related part which
contains the allocated functional and non-functional requirements.
“Harmonizing” the two parts and partitioning them into HWClIs and/or
CSCls are considered tasks to be performed by the Integrate Product
Team (IPT).

This chapter details the hand-off artifacts to the IPT. Essentially, the
hand-off addresses three types of changes to a legacy system
architecture. These three types are elaborated here:

Add additional Ports/Interfaces to the Legacy ClI

Fig.A5-9 depicts an example from the case study described in the
previous paragraph. In this case, the legacy Cls just provided required
information. No changes with regard to the CI functionality are
involved.

1 itsCI11

1 jtsCl11_Legacy "%
pCIZ11_CR_Ust

pLiz1

L]

1 itsCI22

1 itsCl22_Legacy =

pLiz11
pCIZ11_CR_Ue2

Fig.A5-9 Adding additional Ports/Interface(s) to a Legacy CI

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Harmony for SE Deskbook | 145

Appendix

Add new Functionality and Port/Interfaces to the Legacy CI

Fig.A5-10 shows an example from the case study described in the
previous paragraph. In this case, a subset of requirements that were
verified/validated through respective use case models is allocated to
the Cl in use case-related blocks.

1 itsCI211

1 itsCl211_Legacy

1 itsCI211_CR Uc1°&.‘
pCH1

pCl11_Legacy
pCEE_CR_Ued

pCIz

1 jtsCI211_CR_Uc2 &

pCI3_CR_Uc2 : pClzz

pClZZ_Legacy D—D

Fig.A5-10 Adding New Functionality and associated
Ports/Interfaces to a Legacy Cl

These CR blocks then are linked to Cls of the CR system architecture
via respective ports and interfaces. As mentioned in the Functional
Analysis paragraph, some of the identified operations in these blocks
may address functionality already implemented in the black-box part of
the CI. It will be the task of the IPT to filter-out respective
redundancies.

Add a new CI to the Legacy System Architecture

Fig.A5-11 depicts an example from the case study described in the
previous chapter. In this case, a subset of requirements that were
verified/validated through respective use case models, is allocated to
the new ClI in use case-related blocks. These blocks then are linked to
Cls of the CR system architecture via respective ports and interfaces

1 itsCI3

1 itsCI3_CR_Ue2 °a.| —

pCI241_CR_Ue2 E:—D
1
P2 (177

pAil R pAZ

1 jitsCI3_CR_Uct °a1|
pat [———T1
pCIZ11_CR_Uc1

Fig.A5-11 Adding a new CI to the Legacy System Architecture

In any of these cases, the individual Cl hand-off will be composed of:

e The baselined executable Cl model

e The definition of Cl-allocated operations, including links to the
associated system functional and performance requirements.
The allocated operations may be grouped in separate system use
case related blocks.

e The definition of CI ports and /ogical interfaces.
If a Cl is sub-structured into use case related CR blocks,
respective internal ports and associated interfaces are included.

e The definition of Cl behavior, captured in a statechart diagram.
If a Cl is sub-structured into use case related CR blocks, the state-
based behavior is split accordingly.

e Test scenarios — captured in sequence diagrams - derived from
system-level (i.e. white-box) use case scenarios, and

e Cl-allocated non-functional requirements

Harmony for SE Deskbook | 146

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Appendix

A6 Using Model-Based Testing for the Verification of Hand-Off Models

Overview of the Rhapsody TestConductor and
Rhapsody Automatic Test Generation

The Rational Rhapsody TestConductor Add-On (TC) solution is a
SysML/UML-compliant model-based testing environment for real-time
embedded systems and software. By analyzing a model, TC can help
build the test context automatically, and test cases can be described
as sequence diagrams. TC automatically converts them into
executable test procedures where the “inputs” to the system under test
are driven from the test case scenario and so are the resulting
messages that need to be observed. Hence, the verification steps to
create test architectures, to specify executable test cases, and to
execute the test cases is largely automated. Furthermore, since
model-based testing enables to continuously test against
requirements, this solution can aid in reducing specification time and
costs while helping to improve system quality.

The Rational Rhapsody Automatic Test Generation Add-On (ATG)
solution offers a superior capability: by analyzing a model, ATG
automatically generates test scenarios that drive the model through
many paths with a goal of helping to maximize the coverage of the
model. The automatically generated test scenarios are in the form of
sequence diagrams similar to the ones a human tester would specify
with the Rhapsody sequence diagram editor. Hence, ATG generated
the test cases that can be executed using TC.

In a model-driven system development environment, the key artifact of
the hand-off from systems engineering to subsystem development is
executable models. The Harmony/SE Deskbook recommends an
interactive verification using model execution, including model
animation, and a visual comparison of the “as-is” behavior regarding
the expected behavior. This approach pays-off only if the costly
incremental and iterative verification of the hand-off model can be
highly automated. Integration test scenarios shall be part of each
composed subsystem hand-off package. ATG can be applied to
automatically generate such integration test scenarios. Then, TC can
be used to verify a developed subsystem against the requirements

and to verify, that changes in the executable model do not lead to
regressions in the model.

The following sections provide an overview about how TC and ATG
can be applied for the verification of hand-off models using, as an
example, the SecSysController subsystem hand-off model elaborated
in Section 5 of the Deskbook. A more detailed step-by-step
description can be found in the video “TestConductor Tutorial for the
Verification of Harmony/SE Hand-off Models” [5].

ATG and TC Harmony/SE Workflow

Fig.A6-1 outlines the main workflow. The goal is to generate and
execute tests in order to achieve a highly automated verification of the
hand-off model.

Several activities have to be performed within this verification
workflow:

e a hand-off model is analyzed and test scenarios are generated
with ATG

o the generated test scenarios have to be manually reviewed to
verify correctness regarding the initial requirements

o test scenarios are automatically converted into test cases ready
for execution

e test cases can be executed with TC, and

e additional test cases can be added to the test suite to enhance it

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Harmony for SE Deskbook | 147

!

Generate
Test Scenarios with ATG

l

Review
Generated Scenarios

l

Create
TestConductor Test Suite

]

Execute
TestConductor Test Suite

{

Enhance
TestConductor Test Suite

o

Fig.A6-1 ATG and TC Workflow

Generate Test Scenarios with ATG

ATG is applied on the SecSysController hand-off model. Since it is an
executable model of the given requirements, it is the perfect model to
derive test cases for further testing activities. With ATG, the objective
is to generate a set of scenarios including inputs to the model and
expected outputs from the model that sufficiently cover the whole
SecSysController behavior. The SecSysController block is selected to
be the System Under Test (SUT). TC automatically creates a test
architecture including the needed test actors connected to the SUT, as
shown in Fig.A6-2.

«TestContext» =
TCon_SecSysController

1 «SUT,Block» 3
itsSecSysController

1 itsTC for Camera e

pSecSysController] pCamera

]

1 itsTC for CardReaderEntry 2

pSecSysController 1 pCardReaderEntry

]

1 itsTC for FingerprintScanner %

pSecSysController 1 pFingerprintScanner

|

1 itsTC for AccessPoint B

pSecSysController] pAccessPoint

]

1 itsTC for Admin

pSecSysController 1 pAdmin

|

1 itsTC for CardReaderExit =

pSecSysController 1 pcardReaderExit

|

Fig.A6-2 TestArchitecture for SecSysController

The created test architecture contains an instance of the block
SecSysController, which is stereotyped as SUT. It also contains six
auto-generated test actors which are connected to the six ports of the
SecSysController, respectively. Leveraging from this test architecture,
ATG automatically generates the test scenarios. ATG triggers the test
actors to automatically send input messages to the SUT via the ports
and records these messages. Likewise, the observable reactions of
the SUT (i.e. messages from the SUT to the test actors via the ports
are recorded.

Harmony for SE Deskbook | 148

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

As described in the Deskbook, the SecSysController block is an
executable model of the requirements for the SecSysController
subsystem of the Security System case study. The model elements
have an explicit connection to the requirements through a <<satisfy>>
dependency. Verification of the subsystem model against the
subsystem requirements can be performed with integration test
scenarios. The set of integration test scenarios shall be sufficiently rich
enough to execute all parts of the executable model in order to ensure
a proper verification of the model. While ATG generates test
scenarios, it also measures the achieved model element coverage (
i.e. state coverage, transition coverage, and operation coverage).
ATG could, for example, generate a test scenario that traverses the
states and transitions of the main SecSysController statechart, as
illustrated with green color in Fig.A6-3.

SecSysController_Ctrl l

. SN
WaitF¢ fEntryRequest |
aitF¢ rEntryReques! | A

reqValidate SecurityCard
[15_PORT(pCardReaderEntry))
UserRequest="Entry";

\ reqTakeSr ipshot to pCamera

[1S_PORT(pCardReaderExit}}/
UserRequest="Exit";

h 4
ProcessingSecurityC: "dData

NogExitData(); Fa 3Ti Exit
a 3TimesExi

FailT3TimesEntry (% 1 |

CardValidExit

CardValidEntry

[ProcessingBiometricData

| Authenticated BsTimeout BsFail3Times

=
@’ ®) 4
v I reqProcessAlert Exit Failure”) to pAdmin

Fig.A6-3 Sample Test Scenario

Appendix

Obviously, more than one test scenario is necessary to achieve
sufficient coverage of the model. ATG terminates the automatic test
scenario generation when all model elements are traversed. Fig.A6-4
summarizes the information about the achieved SecSysController
model coverage status after ATG finishes the scenario generation.

Coverage Summary
Test Generation Configuration: MewConfiguration0
TextCase Generation Finished.

Timeout: O0:03:00
I 00020

Model Element Coverage

Total Coverage 32
92 11003
State Coverage 34
34 (100%)
Trangition Coverage 50
50 (1002
Operation Coverage 8

8 1o0%]

Fig.A6-4 ATG Model Coverage Overview

The SecSysController model contains 34 states, 50 transitions and 8
operations, in total 92 model elements. As shown in Fig.A6-4, the 92
model elements are covered with test scenarios. ATG can cover
several states and transitions with one test scenario, as shown in the
statechart Fig.A6-3. Hence, ATG computes a minimal set of
necessary test scenarios, and adds them to the hand-off model. In this
case, just 14 test scenarios were needed to achieve 100% model
coverage.

Review Generated Scenarios

It is important to review the generated test scenarios in order to verify
their correctness against the initial requirements. Hence, the review of
the ATG generated scenarios can be considered to be another cross-
check that verifies that the hand-off model indeed meets its
requirements. If a scenario is approved, it can be moved into a new
folder to collect the approved scenarios. An example of a reviewed
and approved sample scenario can be seen in Fig.A6-5.

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Harmony for SE Deskbook | 149

Appendix

itsTC_for_FingerprintScanner itsTC_for_CardReaderEntry itsTC_for_Camera

regValidateSecurityCard()

AN
AT H H T

reqValidateSecurityCard()

TCon_SecSys itsSecSysController itsTC_for_Admin
Controller
| | 7
| | checkForTimeLimitViolations(TimeLimitFlag = U}Z
| P ¢
| |/ reqResetAlarm() %
| |[\ /// evBsTimeout()
! -
| | 7
=> 100 ms /
Le | 7
- | %
| P -
| | ::Z::j::jz::: = "Not Valid") Z
| P Z
| o %
reqDisplayCardStatus(CardStatus = "Not Valid") /
| 7
| |
7
| | 7
| < -
| validateSecurityCard(CardStatus = "Not Valid") %
| b 7
| | regDisplayCardStatus(CardStatus = "Not Valid")
== 19900 ms i 7
v etimiviions(melimitag 0 7
|— checkForTimeLimitViolations(TimeLimitFlag = 0) /
' = _
retAuthenticationStatus(AuthenticationSt = "Not Authenticated")
| |
| S

A R R R R T R T T T Ty

AN
AT HHHhHhiw

Fig.A6-5 Reviewed and Approved Test Scenario Generated by ATG

The lifelines in this test scenario represent (from left to right) the test
context, the SUT, and four of the six test actors of the
SecSysController which are involved in this particular test scenario:
Admin, FingerprintScanner, CardReaderEntry, and Camera.

Additional information not visible in this scenario view: 1 operation, 7
states, and 4 transitions, are covered with this single test scenario.

Create TestConductor Test Suite

The reviewed and approved scenarios are used to create executable
test cases for TC. This activity is fully automated. Such test cases can
be used with TC to verify the hand-off model, especially after changes,
enhancements, or fixes, have been made. A Test Case is a model
element that is visible in the browser underneath the Test Context.
Each Test Case references a Test Scenario which specifies the details
of a test case.

Harmony for SE Deskbook | 150

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Appendix

TC test case in the browser Execute and Review TestConductor Test Suite
5% TestCases ’ Single or multiple test cases can be =
=%) A X ame Status
5%, atg_tc 011() executed automatically in order to | _ S) PASSED
=1-=p SDInstances verify that the black-box behavior i e
El, ATG_TestCase011 : 0 &g ke 011 N9 DASED
» Al of the hand-off model is as 4%, atg_te 013 © PASSED
expected, even after changes and +1%, atg_tc 004 © PASSED
enhancements have been made. + ¥, atg tc 009 © PASSED
. The generated test execution +% atg tc 010 © PASSED
ATG test scenario referenced by the test case + [
y report contains information with | ¥ 9<% 3 e
passed faled verdicts, I o s i
Fig.A6-6 TC Test Case in the Browser Referencing a respectively. e 2
ATG Test Scenario I= atg_tc 002 0 Fisseo
+ %, atg_tc 016 @ PASSED
) + ¥, atg_tc 017 @ PASSED
For each approved test scenario, TC creates a test case. 14 TC test Fig.A6-7 Test Case Execution with <%, atg_tc 015 © PASSED
cases are created for the SecSysController block and added to the TC Leads to Passed Results + ¥, atg_tc 018 © PASSED

test architecture TCon_SecSysController. As part of the hand-off
package for SecSysController, they can be handed-off to subsystem

development.

In addition, TC can measure model coverage during test case

execution and generate a report. As explained earlier in this section,
one single test case may cover many states, transitions, and
operations. Accumulated model element coverage is computed when
executing several test cases.

StateChart: Refactored Statechart Alternative 2

covere

(=]
2
@
m
a | &

covere

(=) (=]
818188
3|3 |3 |3
m (M m
ajlalala

o lao|o
o (o |[®
Q| |G

(=]
2
&
(1]
=9

[=]
&
o
(=%

ere:

covere

8(‘!
uuulig
@

ol |o

ROOT.SecSysController Ctri

ROOT.SecSysController Ctrl.state 2

ROOT.SecSysController Ctrl.state 2.WaitForEntryRequest
ROOT.SecSysController Ctrl.state 2.sendaction 1
ROOT.SecSysController Ctrl.state 2.ProcessingSecurityCardData
ROOT.SecSysController i
ROOT.SecSysController Ctrl.state 2.ProcessingSecurityCardData.ROOT.ProcessingSecurityCardData.sendaction 9

ROOT.SecSysController Ctrl.state 2.ProcessingSecurityCardData.ROOT.ProcessingSecurityCardData.WaitForRequest
ROOT.SecSysController Ctrl.state 2.ProcessingSecurityCardData.ROOT.ProcessingSecurityCardData.SecCardFailure
ROOT.SecSysController Ctrl.state 2.ProcessingSecurityCardData.ROOT.ProcessingSecurityCardData.sendaction 1
ROOT.SecSysController Ctrl.state 2.ProcessingSecurityCardData.ROOT.ProcessingSecurityCardData.sendaction 2
ROOT.SecSysController Ctrl.state 2.ProcessingSecurityCardData.ROOT.ProcessingSecurityCardData.sendaction 3
ROOT.SecSysController Ctrl.state 2.ProcessingSecurityCardData.2

ROOT.SecSysController Ctrl.state 2.ProcessingSecurityCardData.6

ROOT.SecSysController Ctrl.state 2.ProcessingSecurityCardData.0

S

S
F

State
State
State
State
State
State
State
State
State
State
State
State
Transition
Transition

Transition

F
F
*

Fig.A6-8 shows an excerpt of the achieved
model element coverage of the
SecSysController model. It visualizes in
green color the states and transitions that
have been executed. Red color would
indicate that a model element is not executed
by the test suite. In our example, everything
is green because all model elements are
covered.

Fig.A6-8 Model Coverage Report after
Test Case Execution

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Harmony for SE Deskbook | 151

Three Attempts On Employee 1D Entry |

Three Attempts On Biometric Data Entry | Disabling User Account

o ATG_TestCase_4
. ATG_TestCase_10 Ll Thres Attempts On Employee ID Ertry
2 ATG_TestCase_13 Ll Thres Attempts On Employes ID Ertry
_ ATG_TestCase_9 Ll Three Attempts On Employee 1D Ertry
. ATG_TestCase_15 Ll Thres Attempts On Employee ID Ertry

2]] [e[

H, Three Attempts On Biometric Data Entry

H Disabling User Account
g Disabling User Account
g Disabling User Account
g Disabling User Account

Fig.A6-9 Test/Requirements Coverage Overview (excerpt)

As mentioned earlier, Harmony/SE recommends explicitly linking
model elements to the requirements through <<satisfy>>
dependencies. As ATG and TC know the relation between generated
test cases and model elements, the coverage of the requirements
associated with the generated tests can be reported.

Fig.A6-9 shows an excerpt of such a report. On the left side the
generated test cases are listed. The top line shows the requirements.
The entries in the cells of the table indicate wheather a test case
contributes to the verification of a requirement. For instance, test case
ATG TestCase 4 does not contribute to the verification of
requirement Three Attempts On Employee ID Entry. But it contributes
to the verification of requirements Three Attempts On Biometric Data
Entry and Disabling User Account.

Enhance TestConductor Test Suite

When a systems engineer changes, improves, or enhances the
system model, additional test cases are needed to perform a thorough
test of the model. These test cases may be added using the Rhapsody
sequence diagram editor. The test will then be part of the whole test
suite and can also be executed with TC, thus also contributing to the
complete pass/fail results as well as to the model requirements
coverage.

Harmony for SE Deskbook | 152

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

A7 Rhapsody SE-Toolkit (Overview)

SE-Toolkit Feature

Description

1 Modeling
Toolbox

1.1 Add Hyperlink(s)

Adds a hyperlink from the source(s) to the destination(s).

1.2 Add Anchor(s)

Adds an anchor from the source(s) to the destination(s)

1.3 Add SD Ref(s)

Adds selected sequence diagram(s) as
Referenced Sequences to the use case.

1.4 Add Event Reception(s)

Adds receptions of the chosen events to the target interface.

4.5 Add Value Typr

Maps the seleted value type to the selected unit.
Tags of the value type are populated from the unit.

1.6 Merge Blocks

Copies any operations, receptions, and attributes
from the source blocks to a single destination block.

1.7 Create Dependency

Creates dependencies between model elements.

1.8 Populate Activity Diagram

For each reflexive message on the selected sequence(s)
an action is created on the selected activity diagram

1.9 Allocate Operations
from Swimlanes

Copies operations allocated to a swimlane in a

White-Box Activity Diagram into the relevant sub-system block.

1.10 Create New Scenario
from Activity Diagram

Creates a sequence diagram from selected actions in an activity diagram.
If the source is a single action then the user will be asked to choose a path

each time a condition connector is encountered

Rhapsody SE-Toolkit Features

Appendix

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Harmony for SE Deskbook | 153

SE-Toolkit Feature

Description

Create Harmony Project

Creates a Harmony for Systems Engineering compliant project structure

Create System Model from Use Case

Creates a Harmony for Systems Engineering compliant package structure
for the use case model

Auto-Rename Actions

Harmonizes the action statement and action name in an activity diagram.

Add Actor Pins

Adds SysML action pins stereotyped <<ActorPin>> to the selected action on an
activity diagram. User selects the direction and the actor from a drop down list.

Perform Activity View Consistency Check

Checks the consistency between actions of the black-box activity diagram
and the operations in the derived use case scenarios.

Create Ports and Interfaces

Creates behavioral ports and associated interfaces
based on scenarios captured in sequence diagrams

Connect Ports

Creates links between ports on an internal block diagram

Create Initial Statechart

Creates wait state(s) and actition states based on
the information captured in an Activity Diagram .

10

Merge Functional Analysis

Copies all operations, event receptions and attributes
from all use case blocks into the selected block

11

Duplicate Activity View

Makes a copy of an activity view and strips away any referenced scenarios

12

Create Sub Packages

Creates a package per subsystem and
moves subsystem blocks into those packages.

13

Architectural Design Wizard

Copies operations from one architectural layer to another and
tracks when operations have been allocated.

14

Perform Swimlane Consistency Check

Checks consistency between the allocated actions in swimlanes
against the allocated operations in subsystem blocks.

15

Create Allocation Table

Summarizes the allocation of operations of a white-box activity diagram
in an Excel spreadsheet.

16

Create Allocation CSV File

As ‘Create Allocation Table’ — except in a CSV form.
Added to the model as a controlled file.

17

Generate N2 Matrix

Creates an Excel spreadsheet of the
provided and required interface matrix from an internal block diagram

18

Copy MoEs to Children

Copies the MoE attributes of the key function block into the solution blocks.

19

Copy MoEs from Base

Copies the MoE attributes of the key function block into a selected solution block.

20

Perform Trade Analysis

Calculates for a set of solutions a Weighted Objectives Table and
displays the results in an Excel spreadsheet.

Rhapsody SE-Toolkit Features cont’d

Harmony for SE Deskbook | 154

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Appendix

Svstem Functional Analvsis

Harmony/SE Workflow and its
Support throughthe Rhapsody Toolkit

Define
Use Case Model Context #3

Define SE-Toolkit Feature:
UC Functional Flow #4‘ #5
Derive UC Scenarios SE-Toolkit Feature:
from UC Functional Flow JESRINE]

SE-ToolKit Feature:

Define

Ports and Interfaces #7,#8

Derive UC State-Based Behavior
from UC BB-AD and BB-SDs #9

Verify / Validate UC Model
trough Model Execution

[Rainy Day Analysis]

Extend UC Model
w.r.t. Error/Fail Behavior

Requirements Analysis

[System Use Cases defined]

System
Requirements

Link
UC Block Properties to Reqs

SE-Toolkit Feature:
#1.7

Update
Draft System ReqSpec

SE-Toolkit Feature:

SE-ToolKit Feature:

Design Synthesis

!

SE-Toolkit Feature:
#18, #19, #20

Elaborate Architectural C oncept
(Trade Study)

T3

Y
Use Cas e Realization H

Define
System Use Case

Link
Functional / Performance
Regs to System Use Case

.

[else]

SE-Toolkit Feature:
#1.7

[Next System Use Cas:

Prioritize and Group
System Use Cases

!

Define Parts of SE-Toolkit Feature:
Decomposition Hierarchy #12
|
Allocate System-Level SE-Toolkit Feature:
Operations to Parts
|

Derive
White-Box Sequence Diagrams

SE-Toolkit Feature:
#1.10, #14

Define
Ports and Interfaces

SE-Toolkit Feature:
HT, #8, #17

Define - i .
Leaf Blocks State-Bas ed Behavior :BE Toolkit Feature:

Verify Realized UC Model
through Model Execution

Allocate & Link
Non-Functional Requirements

SE-Toolkit Feature:
#1.7

Merge Realized UC Models into the
Integrated System Architecture Model

Verify Collaboration
through Model Execution

#1.9,#5, #11, #13, #14, #1516

© Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Harmony for SE Deskbook

| 155

Appendix

7 References

[11 OMG SysML Specification 1.3, June 2012,
http://www.sysml.org/specs

[2] Bruce Powel Douglass, “The Harmony Process: "The Development Spiral”.
Telelogic Whitepaper 2006

[3] Bruce Powel Douglass, Mats Goethe,
“IBM Rational Workbench for Systems and Software Engineering”, IBM Redpaper, 2010
http://www.redbooks.ibm.com/redpapers/pdfs/redp4681.pdf

[4] “Engineering Design Methods: Strategies for Product Design”
Nigel Cross, Wiley, 1989

[5] BTC Embedded Systems AG,
Rhapsody TestConductor Tutorial for the Verification of Harmony/SE Hand-off Models”, Online video, 2014
http://pic.dhe.ibm.com/infocenter/rhaphlp/v8/index.jsp?topic=%2F com.btc.tcatg.user.doc%2Ftopics%2F com.btc.tcatg.user.doc.html

Harmony for SE Deskbook | 156 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

