

Deskbook Release 4.1

The file "Deskbook Rel 4.0.pdf" is the latest version of the “Systems Engineering Best Practices with the Rational Solution for Systems and Software
Engineering Deskbook Release 4.0” (“Deskbook”), released July 2013.

The Deskbook is written for the practitioner. Screenshots, notes and best practice tips are added to the workflow descriptions. The brief introductions
are minimal rather than narrative. The Deskbook is not intended to replace IBM Rational Rhapsody training; it is intended to supplement it. It is
assumed that the reader is familiar with UML/SysML and the IBM Rational Rhapsody tool.

Permission to use, copy, and distribute, this Deskbook, is granted; provided, however, that the use, copy, and distribution of the Deskbook is made in
whole and not in part.

THIS DESKBOOK IS PROVIDED "AS IS." IBM MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

IBM WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE
DESKBOOK OR THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS OF THE DESKBOOK.

The directory "Deskbook Rel.4.0 Requirements and Models" contains the requirements specification for the Security System example and
snapshots of the models generated with Rhapsody.

Copyright IBM Corporation 2006, 2011
IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A.

Licensed Materials - Property of IBM Corporation
U.S. Government Users Restricted Rights: Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

IBM, the IBM logo, Rational, the Rational logo, Telelogic, the Telelogic logo and other IBM products and services are trademarks of the International
Business Machines Corporation, in the United States, other countries or both.

Other company, product, or service names may be trademarks or service marks of others.

The Rational Software home page on the Internet can be found at ibm.com/software/rational

The IBM home page on the Internet can be found at ibm.com

© Copyright IBM Corporation 2006. 2010. All Rights Reserved.

Foreword

The Author - by J. Rick White

Foreword to the Deskbook Release 4.1

Here it is – the next iteration. Two chapters were added to the
Appendix, extending the scope of the previous release. It now
addresses the model-based system design approach in case of a
change request to a legacy system and a model-based testing
approach for the verification of hand-off models by means of the
Rhapsody tool add-ons TestConductor (TC) and Automatic Test
Generation (ATG).
The testing chapter is a contribution of Dr. Udo Brockmeyer (BTC
Embedded Systems AG, Germany) and his team. Thank you all.

Boston , February 2014

Foreword to the Deskbook Release 4.0

The systems engineering process is iterative. There is no reason why
this should not be applicable also to the Deskbook.

This release outlines a new approach – the Use Case Realization
Approach. Experiences in several complex applications show that this
approach significantly streamlines the development of an Integrated
System Architecture. Also, the collaboration between the tools
Rhapsody and DOORS via the Rhapsody Gateway tool is addressed
in more detail.

Since I first introduced the Deskbook over seven years ago, the
Deskbook has been used by customers all over the world. Besides
the English release there is also a Japanese and a Chinese translation
available. I want to thank Chiori Asada and her team in Japan for their
effort translating the Release 3.1 into Japanese. For China, Lian Gu
personally translated the Release 4.0 into Chinese. This release will
be available in China as an IBM booklet July 2013. I also want to
express my appreciation to Lian for her translation.

I also want to thank two colleagues who deserve special mention with
regard to their contributions to this release: Andy Lapping and Pavel
Vodov. Andy – the “Wizard Guru” – is the author of the Rhapsody SE-
Toolkit. Pavel detailed the collaboration between the tools Rhapsody
and DOORS. Working with them has been a distinct pleasure for me.

Any feedback for the next iteration (release) is appreciated.

Boston, June 20, 2013

Harmony for SE Deskbook | ii © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Table of Contents

Table of Contents

1 INTRODUCTION ... 1

1.1 SCOPE ... 1
1.2 DOCUMENT OVERVIEW.. 1

2 FUNDAMENTALS OF HARMONY FOR SYSTEMS ENGINEERING .. 2

2.1 RATIONAL INTEGRATED SYSTEMS / EMBEDDED SOFTWARE DEVELOPMENT PROCESS HARMONY .. 2
2.2 MODEL-BASED SYSTEMS ENGINEERING PROCESS .. 4

2.2.1 Requirements Analysis.. 5
2.2.2 System Functional Analysis .. 6
2.2.3 Design Synthesis... 10

2.2.3.1 Architectural Analysis... 10
2.2.3.2 Architectural Design ... 13

2.2.4 Systems Engineering Hand-Off... 17
2.3 ESSENTIAL SYSML ARTIFACTS OF MODEL-BASED SYSTEMS ENGINEERING.. 18

2.3.1 Requirements Diagram ... 19
2.3.2 Structure Diagrams.. 19

2.3.2.1 Block Definition Diagram.. 19
2.3.2.2 Internal Block Diagram... 19
2.3.2.3 Parametric Diagram ... 21

2.3.3 Behavior Diagrams.. 21
2.3.3.1 Use Case Diagram... 22
2.3.3.2 Activity Diagram ... 22
2.3.3.3 Sequence Diagram .. 23
2.3.3.4 Statechart Diagram .. 23

2.3.4 Artifact Relationships at the Requirements Analysis / System Functional Analysis Level.. 24
2.4 SERVICE REQUEST-DRIVEN MODELING APPROACH .. 25

3 RHAPSODY PROJECT STRUCTURE ... 26

3.1 PROJECT STRUCTURE OVERVIEW .. 26
3.2 REQUIREMENTS ANALYSIS PACKAGE ... 27
3.3 FUNCTIONAL ANALYSIS PACKAGE .. 28
3.4 DESIGN SYNTHESIS PACKAGE ... 29

3.4.1 Architectural Analysis Package ... 29
3.4.2 Architectural Design Package ... 30

3.5 SYSTEM-LEVEL DEFINITIONS ... 31

4 CASE STUDY: SECURITY SYSTEM ... 32

4.1 CASE STUDY WORKFLOW.. 32
4.2 CREATION OF A HARMONY PROJECT STRUCTURE... 33

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | iii

Table of Contents

4.3 REQUIREMENTS ANALYSIS... 34
4.3.1 DOORS: Import of Stakeholder Requirements ... 35
4.3.2 DOORS: Import of System Requirements... 36
4.3.3 Linking System Requirements to Stakeholder Requirements... 38
4.3.4 DOORS -> Gateway -> Rhapsody: Import of System Requirements ... 41
4.3.5 Definition of System-Level Use Cases .. 42

4.3.5.1 Linking Requirements to Use Cases.. 43
4.3.6 Rhapsody -> Gateway -> DOORS: Export of Use Cases ... 46

4.4 SYSTEM FUNCTIONAL ANALYSIS... 48
4.4.1 Uc1ControlEntry .. 49

4.4.1.1 Definition of Model Context .. 49
4.4.1.2 Definition of Functional Flow .. 52
4.4.1.3 Derivation of Black-Box Use Case Scenarios .. 53
4.4.1.4 Definition of Ports and Interfaces ... 57
4.4.1.5 Definition of Use Case Behavior .. 58
4.4.1.6 Use Case Model Verification.. 60
4.4.1.7 Linking Model Properties to Requirements .. 62

4.4.2 Uc2ControlExit... 64
4.4.2.1 Definition of Model Context .. 64
4.4.2.2 Definition of Functional Flow .. 64
4.4.2.3 Derivation of Black-Box Use Case Scenarios .. 65
4.4.2.4 Definition of Ports and Interfaces ... 66
4.4.2.5 Definition of Use Case Behavior .. 66
4.4.2.6 Use Case Model Verification.. 67
4.4.2.7 Linking Model Properties to Requirements .. 67

4.5 DESIGN SYNTHESIS... 68
4.5.1 Architectural Analysis (Trade-Off Analysis)... 68

4.5.1.1 Definition of Key System Functions ... 69
4.5.1.2 Definition of Candidate Solutions ... 70
4.5.1.3 Definition of Assessment Criteria ... 71
4.5.1.4 Assigning Weights to Assessment Criteria .. 72
4.5.1.5 Definition of a Utility Curve for each Criterion .. 73
4.5.1.6 Assigning Measures of Effectiveness (MoE) to each Solution... 74
4.5.1.7 Determination of Solution ... 75
4.5.1.8 Documentation of the Solution in the ArchitecturalDesignPkg... 77

4.5.2 Architectural Design .. 78
4.5.2.1 Use Case Realization Uc1ControlEntry ... 79

4.5.2.1.1 Update of the ArchitecturalDesignPkg ... 79
4.5.2.1.2 Allocation of System Block Properies to Parts ... 80

4.5.2.1.2.1 Allocation of Operations to Parts ... 80
4.5.2.1.2.2 Allocation of Attributes and Events to Parts .. 84

4.5.2.1.3 Derivation of White-Box Sequence Diagrams.. 85
4.5.2.1.4 Definition of Ports and Interfaces ... 88

Harmony for SE Deskbook | iv © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Table of Contents

4.5.2.1.5 Definition of Realized Use Case Behavior ... 90
4.5.2.1.6 Realized Use Case Verification.. 93
4.5.2.1.7 Allocation of Non-functional Requirements... 93

4.5.2.2 Use Case Realization Uc2ControlExit ... 94
4.5.2.2.1 Update of the ArchitecturalDesignPkg ... 94
4.5.2.2.2 Allocation of System Block Properies to Parts ... 94
4.5.2.2.3 Derivation of White-Box Sequence Diagrams.. 94
4.5.2.2.4 Definition of Ports and Interfaces ... 95
4.5.2.2.5 Definition of Realized Use Case Behavior ... 95
4.5.2.2.6 Realized Use Case Verification.. 96
4.5.2.2.7 Allocation of Non-functional Requirements... 96

4.5.2.3 Integrated Use Case Realization ... 97
4.5.2.3.1 Creation of Base IA Model ... 98
4.5.2.3.2 Configuring Realized Use Case Model Handoff .. 99
4.5.2.3.3 Integration of Realized Use Case .. 100
4.5.2.3.4 Verification of Use Cases Collaboration... 108

5 HAND-OFF TO SUBSYSTEM DEVELOPMENT .. 109

6 APPENDIX... 115

A1 MODELING GUIDELINES ... 115
A1.1 General Guidelines and Drawing Conventions ... 115
A1.2 Use Case Diagram .. 116
A1.3 Block Definition Diagram ... 117
A1.4 Internal Block Diagram .. 118
A1.5 Activity Diagram... 120
A1.6 Sequence Diagram.. 123
A1.7 Statechart Diagram.. 125
A1.8 Profiles... 127

A2 DERIVING A STATECHART DIAGRAM ... 128
A3 USAGE OF ACTIVITY DIAGRAM INFORMATION IN THE SE WORKFLOW ... 133
A6 RHAPSODY ACTION LANGUAGE.. 136
A5 CHANGE REQUEST-DRIVEN SYSTEM DESIGN APPROACH .. 139
A6 USING MODEL-BASED TESTING FOR THE VERIFICATION OF HAND-OFF MODELS... 147
A7 RHAPSODY SE-TOOLKIT (OVERVIEW) .. 153

7 REFERENCES .. 156

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 1

Introduction

1 Introduction

1.1 Scope

Meanwhile, many books and articles have been published about
SysML, the standardized language for model-based systems
engineering [1]. But in most cases, the question of how to apply it in
an integrated systems and software development process has not
been addressed. This deskbook tries to close the gap. Based on the
Rational

®
 Integrated Systems/Embedded Software Development

Process Harmony
™

 it provides systems engineers with a step-by step
guide on using the SysML in a way that allows a seamless transition to
the subsequent system development.
In this deskbook the chosen tools are the Rational

®
 systems and

software design tool Rhapsody® Release 8.01 and the requirements
management and traceability tool DOORS

®
 Release 9.3.

The deskbook is written for the practitioner. Screenshots, notes, and
best practice tips are added to the workflow descriptions. The brief
introductions are minimal rather than narrative.

The deskbook does not replace the Rhapsody training documentation.
It rather is intended to supplement it. It is assumed, that the reader is
familiar with the UML/SysML and the Rhapsody tool.

1.2 Document Overview

The deskbook is divided into 5 sections:

• Section 1 describes the scope and structure of this book.

• Section 2 introduces the basic concepts of Harmony for Systems
Engineering. It starts with an overview of how the systems
engineering part of the integrated systems/embedded software
development process Harmony fits into the model-driven
development lifecycle. Then, the task flow and the associated work
products in the different systems engineering phases are detailed.
With regard to modeling, this section also provides an overview of
SysML artifacts that are considered essential for model-based
systems engineering, followed by an introduction to the service
request driven modeling approach.

• Section 3 describes the project structure that should be followed
when the Rhapsody tool is used in a model-based systems
engineering project.

• Section 4 details a case study of the Harmony for Systems
Engineering workflow using the Rhapsody tool. The chosen
example is a Security System. The workflow starts with the import
of stakeholder requirements into DOORS and ends with the
definition of an executable integrated system architecture model.
The workflow is application oriented and focuses on the usage of
the Rhapsody SE-Toolkit.

• Section 5 addresses the handoff to the subsequent subsystem
(SecSysController) development.

Also provided are several appendices (Section 6) including

• a chapter about modeling/style guidelines regarding the usage of
the various SysML diagrams in model-based systems engineering

• a guideline how to derive a statechart diagram from the information
captured in an activity diagram and associated sequence diagrams.

• a chapter about the usage of Activity Diagram information in the SE
workflow,

• a quick reference guide to the Rhapsody Action Language,

• an overview of the Rhapsody SE-Toolkit features

• a chapter outlining the model-based system design approach in the
case of a change request to a legacy system

• a chapter about a model-based testing approach for the verification
of hand-off models by means of the Rhapsody tool add-ons
TestConcuctor (TC) and Automatic Test Generation (ATG).

Included to this deskbook is a volume containing

• the SecSys Stakeholder and System Requirements
• for each of the SE phases the incrementally extended Rhapsody

model database.
• DOORS archive of the SecSys requirements
• Rhapsody Gateway custom types file

Harmony for SE Deskbook | 2 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Fundamentals of Harmony for Systems Engineering

2 Fundamentals of Harmony for Systems Engineering

2.1 Rational Integrated Systems / Embedded Software Development Process Harmony

Fig. 2-1 shows the Rational Integrated Systems / Embedded Software
Development Process Harmony by means of the classic “V” diagram.
The left leg of the “V” describes the top-down design flow, while the
right hand side shows the bottom-up integration phases from unit test
to the final system acceptance. Using the notation of statecharts, the
impact of a change request on the workflow is visualized by the “high-
level interrupt”. Whenever a change request occurs, the process will
restart at the requirements analysis phase.

The Harmony process consists of two closely coupled sub-processes

- Harmony for Systems Engineering and
- Harmony for Embedded Real Time Development

The systems engineering workflow is iterative with incremental cycles
through the phases requirements analysis, system functional analysis
and design synthesis. The increments are use case based.

Fig. 2-1 Rational Integrated Systems / Embedded Software Development Process Harmony

Module
Integration & Test

Module
Integration & Test

System
Acceptance

System
Acceptance

SW
Analysis & Design

SW
Analysis & Design

SW Implementation
& Unit Test

SW Implementation
& Unit Test

(Sub-)System
Integration & Test

(Sub-)System
Integration & Test

M
o

d
e

l
/
R

e
q

u
ir

e
m

e
n

ts
 R

e
p

o
s

it
o

ry

Stakeholder

Requirements

System

Architecture

Baseline

Software

Implementation

Model

Software

Implementation

Model

System Functional
Analysis

System Functional
Analysis

Executable

Use Case Model(s)

Requirements
Analysis

Requirements
Analysis

Requirements Models,

System Use Cases Model

Harmony™ for

Embedded RT

Development

System
Validation
Plan

System
Validation
Plan

System
Verification
Plan

System
Verification
Plan

Component
Verification
Procedure

Harmony™ for

Systems

Engineering

Scenarios (ConOps)

Change RequestChange Request

Design SynthesisDesign Synthesis

Test
Scenarios

Architectural Analysis Model(s),

System Architecture Model

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 3

Fundamentals of Harmony for Systems Engineering

The software engineering workflow is characterized by the iterative
incremental cycles through the software analysis and design phase,
the implementation phase, and the different levels of integration and
testing [3].

The analysis iterations for systems engineering and implementation
continue through implementation and testing, to provide demonstrable
results with each iteration to continually validate behavior.

It is important to note the creation and reuse of requirements related
test scenarios all along the top-down design path. These scenarios
are also used to assist the bottom-up integration and test phases and,
in the case of system changes, regression test cycles.

The Harmony process supports Model-Driven Development (MDD). In
a model-driven development, the model is the central work product of
the development processes, encompassing both analysis and design.
Each development phase is supported by a specific type of model.

Models that support the requirements analysis phase are

- the Requirement Models and
- the System Use Cases Model.

A requirement model visualizes the taxonomy of requirements. The
system use cases model groups requirements into system use cases.
Neither of these models is executable.

In the system functional analysis phase the focus is on the translation
of the functional requirements into a coherent description of system
functions (operations). Each use case is translated into an executable
model and the underlying system requirements verified through model
execution.

There are two types of executable models supporting the design
synthesis phase:

- Architectural Analysis Model(s) and
- System Architecture Model

The objective of the architectural analysis model(s) - also referred to
as Trade Study Model(s) - is to elaborate an architectural concept for

the implementation of the identified operations e.g. through a
parametric analysis.
The system architecture model captures the allocation of the system
operations to the system architecture that was elaborated in the
previous architectural analysis phase. The correctness and
completeness of the system architecture model is verified through
model execution. Once the model is verified, the architectural design
may be analyzed with regard to performance and safety requirements.
The analysis may include Failure Modes Effects Analysis (FMEA), and
Mission Criticality Analysis.

The baselined system architecture model defines the hand-off to the
subsequent HW/SW development.

Model-driven software development is supported by the Software
Implementation Model. This model is the basis for - either manual or
automatic - code generation.

An essential element of the model-driven development process is the
Model/Requirements Repository. It contains the configuration
controlled knowledge of the system under development, i.e.

- Requirements documentation
- Requirements traceability
- Design documentation and
- Test definitions

Harmony for SE Deskbook | 4 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Fundamentals of Harmony for Systems Engineering

2.2 Model-based Systems Engineering Process

Key objectives of Harmony for Systems Engineering are:

• Identification and derivation of required system functions
• Identification of associated system modes and states
• Allocation of the identified system functions and modes/states to a

subsystem structure

With regard to modeling, these objectives imply a top-down approach
on a high level of abstraction. The main emphasis is on the
identification and allocation of a needed functionality and state-based
behavior, rather than on the details of its functional behavior.

Fig. 2-2 depicts an overview of Harmony for Systems Engineering.
For each of the systems engineering phases, it shows the essential
input and outputs.

The following paragraphs detail the workflow and artifacts of the
model-based systems engineering process and outline an associated
Requirements Management and Traceability (RT) concept. For a
more application oriented workflow description, please refer to the
case study in Section 4.

Fig. 2-2 Model-based Systems Engineering

Non-Functional System Requirements

Links providing traceability

to original requirements

System Operations

Requirements Analysis

Design Synthesis

Architectural Concept

Architectural Analysis
(Trade Study)

HW/SW
Development

HW/SW Req Specs
incl. Test Scenarios

Logical ICDs

Next Iteration

UC Activity Diagram(s) (Black-Box)

Executable Use Case Model(s)

Updated System Requirements

Realized Use Case Model(s)

UC Activity Diagram(s) (Black-Box)

Scenarios (White-Box)

Updated System Requirements

Architectural Analysis Model(s)

Integrated System Architecture Model

Architectural Design

•••• UC Realization

•••• Integrated UC Realization

M
o

d
e
l
/
R

e
q

u
ir

e
m

e
n

ts
 R

e
p

o
s
it

o
ry

M
o

d
e
l
/
R

e
q

u
ir

e
m

e
n

ts
 R

e
p

o
s
it

o
ry

System Use Case(s)

SRS
(Draft)

SRS
(Baseline)

Stakeholder Requirements

Stakeholder Requirements

System Requirements

System Use Case(s)

UC Scenarios (Black-Box)

System Functional Analysis
(Use Case-Based)

Non-Functional System Requirements

Links providing traceability

to original requirements

System OperationsSystem Operations

Requirements Analysis

Design Synthesis

Architectural Concept

Architectural Analysis
(Trade Study)

Architectural Analysis
(Trade Study)

HW/SW
Development

HW/SW Req Specs
incl. Test Scenarios

Logical ICDs

HW/SW Req Specs
incl. Test Scenarios

Logical ICDs

Next Iteration

UC Activity Diagram(s) (Black-Box)UC Activity Diagram(s) (Black-Box)

Executable Use Case Model(s)

Updated System Requirements

Realized Use Case Model(s)

UC Activity Diagram(s) (Black-Box)

Scenarios (White-Box)

Updated System Requirements

Architectural Analysis Model(s)

Integrated System Architecture Model

Architectural Design

•••• UC Realization

•••• Integrated UC Realization

Architectural Design

•••• UC Realization

•••• Integrated UC Realization

•••• UC Realization

•••• Integrated UC Realization

M
o

d
e
l
/
R

e
q

u
ir

e
m

e
n

ts
 R

e
p

o
s
it

o
ry

M
o

d
e
l
/
R

e
q

u
ir

e
m

e
n

ts
 R

e
p

o
s
it

o
ry

System Use Case(s)System Use Case(s)

SRS
(Draft)

SRS
(Baseline)

Stakeholder Requirements

Stakeholder Requirements

System Requirements

System Use Case(s)

UC Scenarios (Black-Box)UC Scenarios (Black-Box)

System Functional Analysis
(Use Case-Based)

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 5

Fundamentals of Harmony for Systems Engineering

2.2.1 Requirements Analysis

The objective of the requirements analysis phase is to analyze the
process inputs. Stakeholder requirements are translated into system
requirements that define what the system must do (functional
requirements) and how well it must perform (quality of service
requirements)

The essential steps of the requirements analysis workflow are shown
in Fig. 2-3. It starts with the analysis and optional refinement of the
stakeholder requirements. Output of this phase is the Stakeholder
Requirements Specification.

Fig. 2-3 Workflow in the Requirements Analysis Phase

Essentially, stakeholder requirements focus on required capabilities. In
the next step, these are transformed into required system functions
(“shall” statements) and documented in the Draft System
Requirements Specification. For traceability, the identified system
requirements are linked to the associated stakeholder requirements.

The next major step in the requirements analysis phase is the
definition of system use cases. A use case describes a specific
operational aspect of the system (operational thread). It specifies the
behavior as perceived by the actors (user) and the message flow
between the actors and the use case. An actor may be a person,
another system or a piece of hardware external to the system under
development (SuD). A use case does not reveal or imply the system’s
internal structure (black box view).
Use cases may be structured hierarchically – but care should be taken
not to functionally decompose the use cases. Use cases are not
functions, they use functions. There is no “golden rule” with regard to
the number of use cases needed to describe a system. Experience
shows that for large systems, typically 10 to 15 system use cases may
be defined at the top level. At the lowest level a use case should be
described by at least 5, with a maximum of 25 essential use case
scenarios. At this stage, emphasis is put on the identification of
“sunny day” use cases, assuming an error/fail free system behavior.
Exception scenarios will be identified at a later stage (=> system
functional analysis) through model execution. If more than 5 error/fail
scenarios are found for a use case, they should be grouped in a
separate exception use case, which are then linked to the “sunny day”
use case via an include or extend dependency.

In order to assure that all functional and associated performance
requirements are covered by the use cases, respective traceability
links need to be established.

Once the system-level use cases are defined and the complete
coverage of the functional and associated performance requirements
is assured, they need to be ranked according to their importance for
the definition of the system architecture. The selected set of use
cases defines the increments of the iterative SE workflow. At the end
of each iteration this ranking might need to be updated.

Stakeholder

Requirements

Specification

System

Requirements

Specification (Draft)

Generate
System Reqs

[Next Use Case]
[else]

Define
System Use Case

Prioritize and Group
System Use Cases

Link
Stakeholder Reqs

to System Reqs

[else]

[System Use Cases defined]

Link
Functional / Performance
Reqs to System Use Case

Stakeholder
Requirements

Analyze/Refine
Stakeholder Reqs

Stakeholder

Requirements

Specification

System

Requirements

Specification (Draft)

System

Requirements

Specification (Draft)

Generate
System Reqs

[Next Use Case]
[else]

Define
System Use Case

Prioritize and Group
System Use Cases

Link
Stakeholder Reqs

to System Reqs

[else]

[System Use Cases defined]

Link
Functional / Performance
Reqs to System Use Case

Stakeholder
Requirements
Stakeholder
Requirements

Analyze/Refine
Stakeholder Reqs

Harmony for SE Deskbook | 6 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Fundamentals of Harmony for Systems Engineering

2.2.2 System Functional Analysis

The main emphasis of the system functional analysis phase is on the
transformation of the functional system requirements into a coherent
description of system functions (operations). The analysis is use
case-based, i.e. each system-level use case that was identified in the
previous requirements analysis phase is translated into an executable
model. The model and the underlying requirements then are verified
through model execution.

Fig. 2-4 details the modeling tasks and the associated work products.
First, the use case model context is defined in an Internal Block
Diagram. Elements of this diagram are instances of SysML blocks,
representing the use case and its associated actor(s). At this stage,
the blocks are empty and not linked.

Fig. 2-4 Alternative Approaches of Building an Executable Use Case Model

[Alternative 1]

[Alternative 3]

Define Use Case Model Context
(UC Internal Block Diagram)

[Alternative 2]

Define UC Functional Flow
(UC Black-Box Activity Diagram)

Verify UC Model
through Model Execution

[Rainy Day Analysis]

[else]

Update
Draft System Req Spec

Build Executable Model of Use Case

Derive UC Scenarios
from UC Functional Flow

(UC Black-Box Sequence Diagrams)

Extend UC Model
w.r.t. Error/Fail Behavior

Derive UC State-Based Behavior
from UC Black-Box AD and SDs

(UC Statechart Diagram)

Define Ports And Interfaces
(UC Internal Block Diagram)

Define UC Scenarios
(UC Black-Box Sequence Diagrams)

Derive UC Functional Flow
from UC Scenarios

(UC Black-Box Activity Diagram)

Define UC State-Based Behavior
(UC Statechart Diagram)

Derive UC Scenarios
from UC Statechart Diagram

(UC Black-Box Sequence Diagrams)

Define Ports And Interfaces
(UC Internal Block Diagram)

Link
UC Block Properties to Reqs

Document
New / Derived Reqs

[Alternative 1]

[Alternative 3]

Define Use Case Model Context
(UC Internal Block Diagram)

Define Use Case Model Context
(UC Internal Block Diagram)

[Alternative 2]

Define UC Functional Flow
(UC Black-Box Activity Diagram)

Define UC Functional Flow
(UC Black-Box Activity Diagram)

Verify UC Model
through Model Execution

Verify UC Model
through Model Execution

[Rainy Day Analysis]

[else]

Update
Draft System Req Spec

Update
Draft System Req Spec

Build Executable Model of Use Case

Derive UC Scenarios
from UC Functional Flow

(UC Black-Box Sequence Diagrams)

Derive UC Scenarios
from UC Functional Flow

(UC Black-Box Sequence Diagrams)

Extend UC Model
w.r.t. Error/Fail Behavior

Extend UC Model
w.r.t. Error/Fail Behavior

Derive UC State-Based Behavior
from UC Black-Box AD and SDs

(UC Statechart Diagram)

Derive UC State-Based Behavior
from UC Black-Box AD and SDs

(UC Statechart Diagram)

Define Ports And Interfaces
(UC Internal Block Diagram)

Define Ports And Interfaces
(UC Internal Block Diagram)

Define UC Scenarios
(UC Black-Box Sequence Diagrams)

Define UC Scenarios
(UC Black-Box Sequence Diagrams)

Derive UC Functional Flow
from UC Scenarios

(UC Black-Box Activity Diagram)

Derive UC Functional Flow
from UC Scenarios

(UC Black-Box Activity Diagram)

Define UC State-Based Behavior
(UC Statechart Diagram)

Define UC State-Based Behavior
(UC Statechart Diagram)

Derive UC Scenarios
from UC Statechart Diagram

(UC Black-Box Sequence Diagrams)

Derive UC Scenarios
from UC Statechart Diagram

(UC Black-Box Sequence Diagrams)

Define Ports And Interfaces
(UC Internal Block Diagram)

Define Ports And Interfaces
(UC Internal Block Diagram)

Link
UC Block Properties to Reqs

Link
UC Block Properties to Reqs

Document
New / Derived Reqs

Document
New / Derived Reqs

Document
New / Derived Reqs

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 7

Fundamentals of Harmony for Systems Engineering

The next step in the modeling workflow is the definition of the behavior
of the use case block. It is captured by means of three SysML
diagrams:

- Activity Diagram,
- Sequence Diagrams, and
- Statechart Diagram.

Each diagram plays a specific role in the elaboration of the use case
behavior. The activity diagram – referred to as Use Case Black-Box
Activity Diagram - describes the overall functional flow (storyboard) of
the use case. It groups functional requirements in actions – in
Harmony for Systems Engineering the equivalent of operations - and
shows, how these actions/operations are linked to each other. The
sequence diagram – referred to as Use Case Black-Box Sequence
Diagram - describes a specific path through the use case and defines
the interactions (messages) between the operations and the actors.
The statechart diagram aggregates the information from the activity
diagram (functional flow) and the sequence diagrams (actor
interactions). It puts this information into the context of system states
and adds to it the system behavior due to external stimuli of different
priority.

There is no mandate directing in which order these diagrams should
be generated. The order may depend on the available information and
the modeler’s preference. Fig. 2-4 shows three alternative
approaches:

Alternative 1 starts with the definition of use case scenarios.
Customers often describe sequences of required system usage (e.g.
Concept of Operations). Once a set of essential scenarios is
captured, the identified functional flow is merged into a common
description in an activity diagram. Ports and interfaces are created
from the sequence diagrams (ref. Section 2.4 Service Request-Driven
Modeling Approach). They define the links between the actor(s) and
the use case block in the use case model internal block diagram. The
final step in this approach is the definition of the state-based behavior
of the use case block in a statechart diagram.

Alternative 2 starts with the definition of the use case functional
flow. This is a common approach, if systems engineers have to
elaborate requirements. Typically, customers like to express their
requirements from the “big picture” point of view. Once the overall
functional flow is defined, use case scenarios are derived from the

activity diagram (ref. Fig. 2-5). Ports and interfaces of the use case
block are created from the sequence diagrams. Lastly, its state-based
behavior is captured in a statechart diagram.

Alternative 3 starts with the definition of the use case state-based
behavior. This approach is recommended if the system under design
(SuD) is strongly state-based. In this case, the creation of a use case
black-box activity diagram may even be skipped. Use case scenarios
then are derived as paths through the statechart diagram. From the
sequence diagram then ports and associated interfaces are
generated.

It should be noted, that regardless of which approach is chosen, the
most important diagram in the system functional analysis process is
the use case block statechart diagram. It comprises the information of
both the black-box sequence diagrams and the use case black-box
activity diagram and can be verified through model execution. The
use case black-box activity diagram and the associated black-box
sequence diagrams will be reused further down in the design process.

Whenever during the use case based system functional analysis new
requirements are identified or high-level requirements are detailed by
derived requirements, they need to be documented. Last at the end of
the system functional analysis phase, these additional requirements
need to be approved by the stakeholders and exported to the
requirements traceability tool.

The use case model is analyzed through model execution using the
black-box use case scenarios as the basis for respective stimuli. It
should be noted, that - following the previously outlined key objectives
of this process - the primary focus is on the verification of the
generated sequences rather than on the validation of the underlying
functionality.

Harmony for SE Deskbook | 8 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Fundamentals of Harmony for Systems Engineering

Fig. 2-5 Derivation of a Use Case Scenario from a Use Case Black-Box Activity Diagram (Industrial Automation Use Case)

checkPosAxisC

checkPosAxisE

mvCmddAxisB_Slow

mvCmddAxisB_Normal

checkPosAxisB

homeAxisD

homeAxisA

homeAxisB

homeKAxis

homeAxisF

homeAxisL

homeAxisE

homeAxisG

openAxisL

mvCtrldAxisLToBasePos

setSpeed

User

mvCtrldAxisAToOpenPos

checkPosAxisA

mvCmddAxisD_Slow

mvCmddAxisD_Normal

mvCmddAxisA_Slow

mvCmddAxisA_Normal

setDirection

User

setDirection

User

checkStatusAxisB

setSpeed

User

setDirection

User

checkStatusAxisD

setSpeed

User

checkStatusAxisA

mvCtrldAxisLToBasePos

setAxis

User

setOpMode

User

checkStatusAxisB

checkPosAxisK

checkPosAxisG

mvCmddAxisC_Slow

mvCmddAxisC_Normal

setSpeed

User

checkPosAxisB

setDirection

User

checkStatusAxisC checkStatusAxisC

mvCmddAxisE_Slow

mvCmddAxisE_Normal

setSpeed

User

setDirection

User

checkStatusAxisE

mvCmddAxisF_Slow

mvCmddAxisF_Normal

setSpeed

User

setDirection

User

checkStatusAxisF

mvCmddAxisL_Slow

mvCmddAxisL_Normal

setSpeed

User

setDirection

User

checkStatusAxisL

mvCmddAxisL_Slow

mvCmddAxisL_Normal

setSpeed

User

setDirection

User

checkStatusAxisL

mvCmddAxisG_Slow

mvCmddAxisG_Normal

setSpeed

User

setDirection

User

checkStatusAxisG

mvCmddAxisM_Slow

mvCmddAxisM_Normal

setSpeed

User

setDirection

User

checkStatusAxisM

[OpMode==Homing"]

[OpMode == "Manual"]

[OpMode==Homing"]

[OpMode == "Manual"]

Start

Start

Start

[isHomed]

[else]

[isHomed]

[else]

Start

Start

Start

[Axis == "AxisA"][Axis == "AxisA"]

Start

[else]

[inSafePos]

[else]

[inSafePos]

[isHomed][isHomed]

[else][else]

[Axis == "AxisD"][Axis == "AxisD"]

[else]

[Axis == "AxisB"]

[else]

[Axis == "AxisB"]

[UserInput == DirectionA][UserInput == DirectionA] [UserInput == DirectionB][UserInput == DirectionB]

[else]

[inSafePos]

[else]

[inSafePos]

[else]

[inSafePos]

[else]

[inSafePos]

[else]

[inSafePos]

[else]

[inSafePos]

[else][else]

[isHomed]

[isHomed]

[isHomed]

[isHomed]

Start

Start

[else][else] [else]

[Axis == "AxisC"]

[else]

[Axis == "AxisC"]

[UserInput == DirectionA] [UserInput == DirectionB][UserInput == DirectionA] [UserInput == DirectionB]

[else]

[inSafePos]

[else]

[inSafePos]

[else]

[inSafePos]

[else]

[inSafePos]

[else]

[inSafePos]

[else]

[inSafePos]

[else][else]

[isHomed][isHomed]

[isHomed][isHomed]

[isHomed]

[else]

[isHomed]

[else]

Start

[else]

[Axis == "AxisE"]

[else]

[Axis == "AxisE"]

[isHomed]

[else]

[isHomed]

[else]

Start

[else]

[Axis == "AxisF"]

[else]

[Axis == "AxisF"]

[isHomed][isHomed]

[else][else]

Start

[else][else]

[Axis == "AxisL"][Axis == "AxisL"]

[isHomed]

[else]

[isHomed]

[else]

Start

[else]

[Axis == "AxisK"]

[else]

[Axis == "AxisK"]

[isHomed]

[else]

[isHomed]

[else]

Start

[else][else] [Axis == "AxisM"]

[Axis == "AxisG"]

[Axis == "AxisM"]

[Axis == "AxisG"]

[isHomed][isHomed]

Start

SD_Uc_HomingAndManualMode_Sc1

[else]

[AxisA Homed]alt

[else]

[AxisA Homed]alt

[else]

[AxisA Homed]alt

User Uc_HomingAndManualMode

AxisB in Save Position

Preconditions:

System is powered

setAxis("AxisA")

reqSetDirection(Direction)

setDirection(Direction)

reqSetSpeed(Speed)

setSpeed(Speed)

checkPosAxisB()

checkStatusAxisA()

mvCmddAxisA_Normal()

reqSetMode("Manual")
setOpMode("Manual")

reqSetAxis("AxisA")

mvCmddAxisA_Slow()

setAxis("AxisA")

reqSetDirection(Direction)

setDirection(Direction)

reqSetSpeed(Speed)

setSpeed(Speed)

checkPosAxisB()

checkStatusAxisA()

mvCmddAxisA_Normal()

reqSetMode("Manual")
setOpMode("Manual")

reqSetAxis("AxisA")

mvCmddAxisA_Slow()

AD_Uc_HomingAndManualMode

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 9

Fundamentals of Harmony for Systems Engineering

Fig. 2-6 Workflow of the Use Case Model Rainy Day Analysis

Once the use case model and the underlying functional requirements
are verified, Rainy Day Analysis may be performed. This analysis
focuses on the identification of system error / fail behavior that was not
covered by the initial set of requirements.

Fig. 2-6 details the workflow and the associated work products of the
rainy day analysis. It is recommended to first add respective
exception behavior to the statechart diagram as this diagram depicts
best the overall system behavior. If the error / fail behavior includes
new functionality, the use case black-box activity diagram and – if
needed – the use case fail behaviour scenario as well as the internal
block diagram needs to be updated accordingly. The extended use
case model is verified through model execution.

The use case modeling workflow ends with the definition of traceability
links between the use case block properties and relevant system
requirements. If new requirements or derived requirements were
identified during the modeling process, the draft system requirements
specification needs to be updated accordingly.

Once all use cases of an iteration increment are verified, the system
functional analysis phase ends with the baselined System
Requirements Specification. Another document generated at this
stage is the System-Level Interface Control Document (ICD). It
defines the logical (=functional) interfaces between the (black-box)
system and its actors and is the aggregate of all use case blocks
interfaces. This ICD is the basis for the later system-level (black-box)
test definition.

Sometimes the question comes up whether a black-box functional
system model – incl. an integrated black-box statechart diagram -
should be built in order to assure, that the system has been completely
described by the use cases. In principal, there is no reason why it
should not be done. The more pragmatic and time saving approach is
to shift this issue to the subsequent design synthesis phase. The use
cases should have brought enough system information to start the
architectural design. What is missing will be identified later when the
system architecture model will be verified through model execution.

Extend
UC Block Statechart Diagram

Extend UC Model w.r.t. Error/Fail Behavior

Update
UC Black-Box Activity Diagram

Identify
Exception Behavior

Update
UC Model Internal Block Diagram

[else]

Verify UC Model
trough Model Execution

Record
Exception Scenario(s)

[Update
UC Functional Flow]

[else]

[Update
UC Model IBD]

[else]

[Next Exception]

Extend
UC Block Statechart Diagram

Extend UC Model w.r.t. Error/Fail Behavior

Update
UC Black-Box Activity Diagram

Identify
Exception Behavior

Update
UC Model Internal Block Diagram

[else]

Verify UC Model
trough Model Execution

Record
Exception Scenario(s)

[Update
UC Functional Flow]

[else]

[Update
UC Model IBD]

[else]

[Next Exception]

Harmony for SE Deskbook | 10 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Fundamentals of Harmony for Systems Engineering

2.2.3 Design Synthesis

The focus of the Design Synthesis phase is on the development of a
physical architecture (i.e. a set of product, system, and/or software
elements) capable of performing the required functions within the limits
of the prescribed performance constraints.

Design Synthesis is split into two sub-phases

- Architectural Analysis and
- Architectural Design.

2.2.3.1 Architectural Analysis

System functional analysis defines What the system should do but not
How it is to be done. The objective of a Trade Study in the
architectural analysis phase is to determine the best means of
achieving the capability of a particular function in a rational manner.
i.e. to identify the How.

One of the simplest means of determining the “how” is a technique
known as the Weighted Objectives Method, developed by N. Cross [4].
This form of analysis is commonly used within the field of Engineering
System Design to evaluate potential solutions to functional problems.
It can also be used to determine the best hardware platforms for
software or decide the optimum mechanical/electrical hardware split
based upon non-functional requirements like a set of customer
constraints, performance or cost criteria.

Fig. 2-7 depicts the workflow and the associated work products in the
Architectural Analysis phase.

Identify Key System Functions
The objective of this task is to group system functions into sub-sets to
support the analysis of alternatives during architectural analysis. A
key system function could be a group of system functions that

• are cohesive and/or tightly coupled or
• may be realized by a single architectural component or
• will be realized by reuse of an existing component (HW/SW) or
• may be reused within the system or
• address a specific design constraint

Fig. 2-7 Workflow and Work Product in the Architectural Analysis Phase

The next 6 tasks are performed for each selected key system function.

Define Candidate Solutions
There is always more than one way to realize a key system function.
The objective of this task is to identify possible solutions for a
previously identified key system function. The solutions are
elaborated in a team representing all relevant areas of expertise. At

[Next Key System Function]
[else]

Build Weighted Objectives Table

Define
Candidate Solutions

Define
Key System Functions

Assign
Weights to Criteria

Determine Solution

Merge Solutions to
Form System Architecture

Define Utility Curve
for each Criterion

Define
Assessment Criteria

Assign MoEs
to Candidate Solutions

Trade Study

Report

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 11

Fundamentals of Harmony for Systems Engineering

Utility
(MoE)

0

2

4

6

8

10

GoalThreshold
Assessment Criterion

(e.g. Speed, Cost, Reliability, etc)

Step Function Continuous
Relationship

Utility
(MoE)

0

2

4

6

8

10

GoalThreshold
Assessment Criterion

(e.g. Speed, Cost, Reliability, etc)

Step Function Continuous
Relationship

this stage, associated stakeholder requirements need to be identified
and taken into consideration. Candidate solutions may take into
consideration previously developed hardware and software
components, non-developmental items, and COTS hardware and
software.

Identify Assessment Criteria
In order to identify the best solution from a set of candidate solutions
for a specific key system function, assessment criteria need to be
identified. Meaningful assessment criteria are established in
collaboration with stakeholders and a team representing all relevant
areas of expertise. Typically, the assessment criteria are based upon
customer constraints, required performance characteristics, and/or
costs.

Assign Weights to Assessment Criteria
Not all assessment criteria are equal. Some are more important than
others. Assessment criteria are weighted according to their relative
importance to the overall solution. The weighting factors are
normalized to add up to 1.0. This task should be performed in
collaboration with stakeholders and relevant domain experts.

Define Utility Curves for each Criterion
The purpose of this task is to define a set of normalization curves -
also known as Utility Curves or Value Functions - one for each
assessment criterion that will be used to produce a dimensionless
Measure of Effectiveness for each solution candidate. This curve
yields a normalized value typically between 0 and 10. The input value
to the curve is typically based upon equipment specifications or
derived from calculations based upon possible solutions. In this case
it is considered as being objective.
A utility curve may also be created by knowledgeable project
members. In this case the curve reflects the consensus among the
group but should be considered as subjective.

Assign Measures of Effectiveness (MoE) to Candidate Solution
In order to compare the different solutions of a key system function via
weighted objectives analysis each candidate solution is characterized
by a set of normalized, dimensionless values - Measures of
Effectiveness (MoE) - which describe how effective a solution
candidate is for a particular assessment criterionS The MoE is a
normalized value computed using the utility curve and the nominal
value specified for the solution candidate. The nominal values are

typically determined from equipment specifications or derived from
calculations based upon the relevant solution.

Determine Solution
The determination of a preferred solution is performed by means of
Weighted Objectives calculation. In this analysis the MoE values for
each of the assessment criteria are multiplied by the appropriate
weight. The weighted values for each alternative solution then are
added to obtain a total score for each solution. The solution with the
highest score is selected as the implementation for that particular
function.
Fig. 2-9 shows for the key system function “Capture Biometric Data” in
the case study described later in chapter 4, that the preferred solution
is the Fingerprint Scanner.

Fig. 2-8 Different Shapes of Utility Curves

Merge Possible Solutions to form System Architecture
The solutions identified for each key system function are merged to
define the equipment breakdown structure. It is assumed that the
initial key system functions were independent. Thus, the final merged
solution is the preferred solution based upon the assessment criteria
for the complete architecture. It will be the basis of the subsequent
architectural design activities. These design decisions are captured in
the Trade Study Report along with any resulting design constraints.

Harmony for SE Deskbook | 12 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Fundamentals of Harmony for Systems Engineering

Fig. 2-9 Weighted Objectives Table of the Key System Function “Capture Biometric Data” (ref. Case Study Chapter 4)

Purchase Cost ($)

MoE

0

2

4

6

8

10

2

4

6

8

10

50100150200250300350400 100150200250300350400 0

Optical Scanner

Purchase Cost Utility Curve used in the Trade Study

Fingerprint Scanner

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 13

Fundamentals of Harmony for Systems Engineering

2.2.3.2 Architectural Design

The focus of the architectural design phase is on the allocation of
functional requirements and non-functional requirements to an
architectural structure. This structure may be the result of a previous
trade study or a given (legacy) architecture. The allocation is an
iterative process and is typically performed in collaboration with
domain experts.

Architectural design is performed incrementally for each use case of
an iteration by transitioning from the black-box view to the white-box
view – also referred to as use case realization (ref. Fig. 2-10). The
taskflow is quite similar to the one outlined for the System Functional
Analysis

It starts with the definition of the system architectural structure. Based
on the chosen design concept the use case block is decomposed into
its relevant system architecture parts. The resulting structure is
captured in a SysML Block Definition Diagram (BDD) and Internal
Block Diagram (IBD).

Next, the system-level use case operations are allocated to the system
structure. Generally, there are two ways to proceed. If an allocation
concept exixts, they may be copied directly into the relevant parts.
Otherwise, the allocation can be elaborate graphically by means of the
Use Case White-Box Activity Diagram. Essentially, this activity
diagram is a copy of the Use Case Black-Box Activity Diagram,
partitioned into swim lanes, each representing a block of the system
architectural decomposition hierarchy. Based on the chosen design
concept, the system-level operations (= actions) then are “moved” into
respective block swim lanes (ref. Fig. 2-12) An essential requirement
for this allocation is that the initial links (functional flow) between the
actions are maintained.

Use case white-box activity diagrams may be nested, thus reflecting
the iterative architectural decompositions of the system under design
(ref. Fig. 2-11).

If an action cannot be allocated to a single block, it must be
decomposed. In this case, the sub-operations need to be linked to the
parent operation through a respective dependency.

Fig. 2-10 Workflow in the Architectural Desigm Phase

A
rc

h
it

e
c

tu
ra

l
A

n
a
ly

s
is

A
rc

h
it

e
c

tu
ra

l
D

e
s

ig
n

A
rc

h
it

e
c

tu
ra

l
A

n
a
ly

s
is

A
rc

h
it

e
c

tu
ra

l
D

e
s

ig
n

Harmony for SE Deskbook | 14 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Fundamentals of Harmony for Systems Engineering

Fig. 2-11 Nested Use Case White-Box Activity Diagram

An action/operation may also be allocated to more than one block, e.g.
(architectural redundancy) in order to meet fault tolerance
requirements. In this case, the relevant operation/action is copied into
the respective block swim lane and integrated into the functional flow.

The white-box activity diagram provides an initial estimate of the
resulting load on respective communication channels, as links that
cross a swim lane correspond to interfaces.

Dependent on the hand-off to the subsequent development, the
subsystem block(s) - and associated white-box activity diagram may
need to be further decomposed. At the lowest level, the functional
allocation may address which operation should be implemented in
hardware and which should be implemented in software.

From the final Use Case White-Box Diagram, associated White-Box
Sequence Diagrams are derived (ref. Fig. 2-13). As outlined
previously, these sequence diagrams are the basis from which ports
and interfaces of the blocks at the lowest level of the system
architecture are derived.

Once system-level operations are allocated to the relevant blocks at
the lowest level of the architectural decomposition and associated
ports and interfaces are defined, the individual state-based behavior is
captured in a statechart diagram. The leaf-block behavior as well as
the collaboration of the decomposed subsystems then is verified
through model execution.

The last step in the use case realization task flow is the allocation of
non-functional requirements to the relevant part(s) and/or operations
(e.g. time budgeting). Respective <<satisfy>> links need to be
established.

The final task in the architectural design phase is the creation/update
of the Integrated System Architecture Model. This model is the
aggregate of the realized use case models. It is the aggregate of the
baselined realized use case models

The use cases collaboration as well as the correctness and
completeness of the Integrated System Architecture Model may be
verified through model execution.

SuD

SS1 SS2

SS13 SS12 SS11

UC Black-Boc Activity Dagram

UC White Box Activity Diagram Lvl 1

 UC White-Box
Activity Diagram Lvl 2

SuD_Lvl 1

 SuD

1
SS1

1 1
SS2

1

SS11 1 1

1
SS12 1

1
SS13 1

SuD_Lvl 2

SuD_Lvl 0

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 15

Fundamentals of Harmony for Systems Engineering

Fig. 2-12 Allocation of Operations to Subsystems (Use Case Fig. 2-5)

checkPosAxisC

checkPosAxisE

mvCmddAxisB_Slow

mvCmddAxisB_Normal

checkPosAxisB

homeAxisD

homeAxisA

homeAxisB

homeKAxis

homeAxisF

homeAxisL

homeAxisE

homeAxisG

openAxisL

mvCtrldAxisLToBasePos

setSpeed

User

mvCtrldAxisAToOpenPos

checkPosAxisA

mvCmddAxisD_Slow

mvCmddAxisD_Normal

mvCmddAxisA_Slow

mvCmddAxisA_Normal

setDirection

User

setDirection

User

checkStatusAxisB

setSpeed

User

setDi rection

User

checkStatusAxisD

setSpeed

User

checkStatusAxisA

mvCtrldAxisLToBasePos

setAxis

User

setOpMode

User

checkStatusAxisB

checkPosAxisK

checkPosAxisG

mvCmddAxisC_Slow

mvCmddAxisC_Normal

setSpeed

User

checkPosAxisB

setDirection

User

checkStatusAxisC checkStatusAxisC

mvCmddAxisE_Slow

mvCmddAxisE_Normal

setSpeed

User

setDirection

User

checkStatusAxisE

mvCmddAxisF_Slow

mvCmddAxisF_Normal

setSpeed

User

setDirection

User

checkStatusAxisF

mvCmddAxisL_Slow

mvCmddAxisL_Normal

setSpeed

User

setDi rection

User

checkStatusAxisL

mvCmddAxisL_Slow

mvCmddAxisL_Normal

setSpeed

User

setDirection

User

checkStatusAxisL

mvCmddAxisG_Slow

mvCmddAxisG_Normal

setSpeed

User

setDirection

User

checkStatusAxisG

mvCmddAxisM_Slow

mvCmddAxisM_Normal

setSpeed

User

setDirection

User

checkStatusAxisM

[OpMode==Homing"]

[OpMode == "Manual"]

[OpMode==Homing"]

[OpMode == "Manual"]

Start

Start

Start

[isHomed]

[else]

[isHomed]

[else]

Start

Start

Start

[Axis == "AxisA"][Axis == "AxisA"]

Start

[else]

[inSafePos]

[else]

[inSafePos]

[isHomed][isHomed]

[else][else]

[Axis == "AxisD"][Axis == "AxisD"]

[else]

[Axis == "AxisB"]

[else]

[Axis == "AxisB"]

[UserInput == DirectionA][UserInput == DirectionA] [UserInput == DirectionB][UserInput == DirectionB]

[else]

[inSafePos]

[else]

[inSafePos]

[else]

[inSafePos]

[else]

[inSafePos]

[else]

[inSafePos]

[else]

[inSafePos]

[else][else]

[isHomed]

[isHomed]

[isHomed]

[isHomed]

Start

Start

[else][else] [else]

[Axis == "AxisC"]

[else]

[Axis == "AxisC"]

[UserInput == DirectionA] [UserInput == DirectionB][UserInput == DirectionA] [UserInput == DirectionB]

[else]

[inSafePos]

[else]

[inSafePos]

[else]

[inSafePos]

[else]

[inSafePos]

[else]

[inSafePos]

[else]

[inSafePos]

[else][else]

[isHomed][isHomed]

[isHomed][isHomed]

[isHomed]

[else]

[isHomed]

[else]

Start

[else]

[Axis == "AxisE"]

[else]

[Axis == "AxisE"]

[isHomed]

[else]

[isHomed]

[else]

Start

[else]

[Axis == "AxisF"]

[else]

[Axis == "AxisF"]

[isHomed][isHomed]

[else][else]

Start

[else][else]

[Axis == "AxisL"][Axis == "AxisL"]

[isHomed]

[else]

[isHomed]

[else]

Start

[else]

[Axis == "AxisK"]

[else]

[Axis == "AxisK"]

[isHomed]

[else]

[isHomed]

[else]

Start

[else][else] [Axis == "AxisM"]

[Axis == "AxisG"]

[Axis == "AxisM"]

[Axis == "AxisG"]

[isHomed][isHomed]

Start

Use Case Black-Box Activity Diagram

Use Case White-Box Activity Diagram Decomposition Lvl 1

Proc3

homeAxisK

Start

homeAxisG

CheckPosAxisG

checkPosAxisK

checkStatusAxisK

mvCmddAxisK_Slow

[else]

mvCmddAxisK_Normal

[Homed]

Start

Start

mvCmddAxisG_Normal

[Homed]

checkStatusAxisG

mvCmddAxisG_Slow

[else]

Proc2

mvCmddAxisA_Slow

Start
[else]

[else]

[isInSafePos]

Start

mvCtrldAxisLToBasePos

homeAxisL

mvCtrldAxisAToOpenPos

homeAxisA

homeAxisB

mvCtrldAxisLToBasePos

homeAxisF

homeAxisE

openAxisL

mvCmddAxisA_Normal

[isHomed]

checkPosAxisL

Start
[else]

[InSafePos]

[else]

[inSafePos]

mvCmddAxisB_Slow

[else]

Start

[else]

[else]

[inSafePos]

checkPosAxisA

checkPosAxisA

mvCmddAxisB_Normal[isHomed]

[isHomed]

checkStatusAxisA

checkPosAxisB

[UserInput == DirectionB][UserInput == DirectionA]

checkStatusAxisB

Start

mvCmddAxisL_Normal

[Homed]

mvCmddAxisF_Slow

checkStatusAxisF

Start

mvCmddAxisF_Normal

[Homed]

[else]

mvCmddAxisE_Slow

checkStatusAxisE

start

mvCmddAxisE_Normal

[Homed]

[else]

checkStatusAxisL

mvCmddAxisL_Slow

checkPosAxisB

Start

mvCmddAxisL_Normal

[isHomed]

[inSafePos]

[else]

[InSafePos]

[isHomed]

[else]

Start
[else]

[else]

[else]

[InSafePos]

[UserInput == DirectionB] [UserInput == DirectionA]

mvCmddAxisL_Slow

[else]

checkStatusAxisL

Proc1

[else]

Start setOpMode

User

homeAxisD[OpMode=="Homing"]

setAxis

User
[OpMode == "Manual"]

setDirection

User

[UserInput =="AxisD"]

mvCmddAxisD_Slow

Start

[else]

mvCmddAxisD_Normal

[isHomed]

checkStatusAxisD

setSpeed

User

setDirection

User

[UserInput =="AxisA"]

setSpeed

User

setSpeed

User

setDirection

User

[UserInput == "AxisB"]

[else]

[else]

setDirection

User

[UserInput == "AxisC"]

setDirection

User

setSpeed

User

setSpeed

User

[UserInput == "AxisA"]

[else]

[else]

setDirection

User

[UserInput == "AxisF"]

setSpeed

User[else]

setDirection

User

[UserInput == "AxisL"]

setSpeed

User

setSpeed

User

setSpeed

User

setDirection

User

setSpeed

User

setDirection

User

[UserInput == "AxisG"]

[UserInput == "AxisM"]

mvCmddAxisM_Normal mvCmddAxisM_Slow

checkStatusAxisM

Start

[Homed] [else]

setDirection

User

[UserInput == "AxisK"]

[else]

[else]

Proc3

homeAxisK

Start

homeAxisG

CheckPosAxisG

checkPosAxisK

checkStatusAxisK

mvCmddAxisK_Slow

[else]

mvCmddAxisK_Normal

[Homed]

Start

Start

mvCmddAxisG_Normal

[Homed]

checkStatusAxisG

mvCmddAxisG_Slow

[else]

Proc2

mvCmddAxisA_Slow

Start
[else]

[else]

[isInSafePos]

Start

mvCtrldAxisLToBasePos

homeAxisL

mvCtrldAxisAToOpenPos

homeAxisA

homeAxisB

mvCtrldAxisLToBasePos

homeAxisF

homeAxisE

openAxisL

mvCmddAxisA_Normal

[isHomed]

checkPosAxisL

Start
[else]

[InSafePos]

[else]

[inSafePos]

mvCmddAxisB_Slow

[else]

Start

[else]

[else]

[inSafePos]

checkPosAxisA

checkPosAxisA

mvCmddAxisB_Normal[isHomed]

[isHomed]

checkStatusAxisA

checkPosAxisB

[UserInput == DirectionB][UserInput == DirectionA]

checkStatusAxisB

Start

mvCmddAxisL_Normal

[Homed]

mvCmddAxisF_Slow

checkStatusAxisF

Start

mvCmddAxisF_Normal

[Homed]

[else]

mvCmddAxisE_Slow

checkStatusAxisE

start

mvCmddAxisE_Normal

[Homed]

[else]

checkStatusAxisL

mvCmddAxisL_Slow

checkPosAxisB

Start

mvCmddAxisL_Normal

[isHomed]

[inSafePos]

[else]

[InSafePos]

[isHomed]

[else]

Start
[else]

[else]

[else]

[InSafePos]

[UserInput == DirectionB] [UserInput == DirectionA]

mvCmddAxisL_Slow

[else]

checkStatusAxisL

Proc1

[else]

Start setOpMode

User

homeAxisD[OpMode=="Homing"]

setAxis

User
[OpMode == "Manual"]

setDirection

User

[UserInput =="AxisD"]

mvCmddAxisD_Slow

Start

[else]

mvCmddAxisD_Normal

[isHomed]

checkStatusAxisD

setSpeed

User

setDirection

User

[UserInput =="AxisA"]

setSpeed

User

setSpeed

User

setDirection

User

[UserInput == "AxisB"]

[else]

[else]

setDirection

User

[UserInput == "AxisC"]

setDirection

User

setSpeed

User

setSpeed

User

[UserInput == "AxisA"]

[else]

[else]

setDirection

User

[UserInput == "AxisF"]

setSpeed

User[else]

setDirection

User

[UserInput == "AxisL"]

setSpeed

User

setSpeed

User

setSpeed

User

setDirection

User

setSpeed

User

setDirection

User

[UserInput == "AxisG"]

[UserInput == "AxisM"]

mvCmddAxisM_Normal mvCmddAxisM_Slow

checkStatusAxisM

Start

[Homed] [else]

setDirection

User

[UserInput == "AxisK"]

[else]

[else]

Proc3

homeAxisK

Start

homeAxisG

CheckPosAxisG

checkPosAxisK

checkStatusAxisK

mvCmddAxisK_Slow

[else]

mvCmddAxisK_Normal

[Homed]

Start

Start

mvCmddAxisG_Normal

[Homed]

checkStatusAxisG

mvCmddAxisG_Slow

[else]

Proc2

mvCmddAxisA_Slow

Start
[else]

[else]

[isInSafePos]

Start

mvCtrldAxisLToBasePos

homeAxisL

mvCtrldAxisAToOpenPos

homeAxisA

homeAxisB

mvCtrldAxisLToBasePos

homeAxisF

homeAxisE

openAxisL

mvCmddAxisA_Normal

[isHomed]

checkPosAxisL

Start
[else]

[InSafePos]

[else]

[inSafePos]

mvCmddAxisB_Slow

[else]

Start

[else]

[else]

[inSafePos]

checkPosAxisA

checkPosAxisA

mvCmddAxisB_Normal[isHomed]

[isHomed]

checkStatusAxisA

checkPosAxisB

[UserInput == DirectionB][UserInput == DirectionA]

checkStatusAxisB

Start

mvCmddAxisL_Normal

[Homed]

mvCmddAxisF_Slow

checkStatusAxisF

Start

mvCmddAxisF_Normal

[Homed]

[else]

mvCmddAxisE_Slow

checkStatusAxisE

start

mvCmddAxisE_Normal

[Homed]

[else]

checkStatusAxisL

mvCmddAxisL_Slow

checkPosAxisB

Start

mvCmddAxisL_Normal

[isHomed]

[inSafePos]

[else]

[InSafePos]

[isHomed]

[else]

Start
[else]

[else]

[else]

[InSafePos]

[UserInput == DirectionB] [UserInput == DirectionA]

mvCmddAxisL_Slow

[else]

checkStatusAxisL

Proc1

[else]

Start setOpMode

User

homeAxisD[OpMode=="Homing"]

setAxis

User
[OpMode == "Manual"]

setDirection

User

[UserInput =="AxisD"]

mvCmddAxisD_Slow

Start

[else]

mvCmddAxisD_Normal

[isHomed]

checkStatusAxisD

setSpeed

User

setDirection

User

[UserInput =="AxisA"]

setSpeed

User

setSpeed

User

setDirection

User

[UserInput == "AxisB"]

[else]

[else]

setDirection

User

[UserInput == "AxisC"]

setDirection

User

setSpeed

User

setSpeed

User

[UserInput == "AxisA"]

[else]

[else]

setDirection

User

[UserInput == "AxisF"]

setSpeed

User[else]

setDirection

User

[UserInput == "AxisL"]

setSpeed

User

setSpeed

User

setSpeed

User

setDirection

User

setSpeed

User

setDirection

User

[UserInput == "AxisG"]

[UserInput == "AxisM"]

mvCmddAxisM_Normal mvCmddAxisM_Slow

checkStatusAxisM

Start

[Homed] [else]

setDirection

User

[UserInput == "AxisK"]

[else]

[else]

Proc3

homeAxisK

Start

homeAxisG

CheckPosAxisG

checkPosAxisK

checkStatusAxisK

mvCmddAxisK_Slow

[else]

mvCmddAxisK_Normal

[Homed]

Start

Start

mvCmddAxisG_Normal

[Homed]

checkStatusAxisG

mvCmddAxisG_Slow

[else]

Proc2

mvCmddAxisA_Slow

Start
[else]

[else]

[isInSafePos]

Start

mvCtrldAxisLToBasePos

homeAxisL

mvCtrldAxisAToOpenPos

homeAxisA

homeAxisB

mvCtrldAxisLToBasePos

homeAxisF

homeAxisE

openAxisL

mvCmddAxisA_Normal

[isHomed]

checkPosAxisL

Start
[else]

[InSafePos]

[else]

[inSafePos]

mvCmddAxisB_Slow

[else]

Start

[else]

[else]

[inSafePos]

checkPosAxisA

checkPosAxisA

mvCmddAxisB_Normal[isHomed]

[isHomed]

checkStatusAxisA

checkPosAxisB

[UserInput == DirectionB][UserInput == DirectionA]

checkStatusAxisB

Start

mvCmddAxisL_Normal

[Homed]

mvCmddAxisF_Slow

checkStatusAxisF

Start

mvCmddAxisF_Normal

[Homed]

[else]

mvCmddAxisE_Slow

checkStatusAxisE

start

mvCmddAxisE_Normal

[Homed]

[else]

checkStatusAxisL

mvCmddAxisL_Slow

checkPosAxisB

Start

mvCmddAxisL_Normal

[isHomed]

[inSafePos]

[else]

[InSafePos]

[isHomed]

[else]

Start
[else]

[else]

[else]

[InSafePos]

[UserInput == DirectionB] [UserInput == DirectionA]

mvCmddAxisL_Slow

[else]

checkStatusAxisL

Proc1

[else]

Start setOpMode

User

homeAxisD[OpMode=="Homing"]

setAxis

User
[OpMode == "Manual"]

setDirection

User

[UserInput =="AxisD"]

mvCmddAxisD_Slow

Start

[else]

mvCmddAxisD_Normal

[isHomed]

checkStatusAxisD

setSpeed

User

setDirection

User

[UserInput =="AxisA"]

setSpeed

User

setSpeed

User

setDirection

User

[UserInput == "AxisB"]

[else]

[else]

setDirection

User

[UserInput == "AxisC"]

setDirection

User

setSpeed

User

setSpeed

User

[UserInput == "AxisA"]

[else]

[else]

setDirection

User

[UserInput == "AxisF"]

setSpeed

User[else]

setDirection

User

[UserInput == "AxisL"]

setSpeed

User

setSpeed

User

setSpeed

User

setDirection

User

setSpeed

User

setDirection

User

[UserInput == "AxisG"]

[UserInput == "AxisM"]

mvCmddAxisM_Normal mvCmddAxisM_Slow

checkStatusAxisM

Start

[Homed] [else]

setDirection

User

[UserInput == "AxisK"]

[else]

[else]

[else][Homed]

[Homed] [else]

[else]

[else]

[isInSafePos]

[isHomed]

[else]

[InSafePos]

[else]

[inSafePos]

[else]

[else]

[else]

[inSafePos]

[isHomed]

[isHomed]

[UserInput == DirectionB][UserInput == DirectionA]

[Homed]

[Homed]

[else]

[Homed]

[else]

[isHomed]

[inSafePos]

[else]

[InSafePos]

[isHomed]

[else]

[else]

[else]

[else]

[InSafePos]

[UserInput == DirectionB] [UserInput == DirectionA]

[else]

[else]

[OpMode=="Homing"]

[OpMode == "Manual"]

[UserInput =="AxisD"]

[else][isHomed]

[UserInput =="AxisA"]

[UserInput == "AxisB"]

[else]

[else]

[UserInput == "AxisC"]

[UserInput == "AxisA"]

[else]

[else]

[UserInput == "AxisF"]

[else]

[UserInput == "AxisL"]

[UserInput == "AxisG"]

[UserInput == "AxisM"]

[Homed] [else]

[UserInput == "AxisK"]

[else]

[else]

AD_Uc_HomingAndManualMode

Harmony for SE Deskbook | 16 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Fundamentals of Harmony for Systems Engineering

Fig. 2-13 Derivation of White-Box Scenarios from a Use Case White-Box Activity Diagram (ref. Fig. 2-5)

Uc_HomingAndManualMode_WB_Sc1

User

displaySystemStatus(SystemStatus)

Proc1

displaySystemStatus(SystemStatus)

reqSetOpMode("Manual")

setOpMode("Manual")

reqSetAxis("AxisC")

setAxis("AxisC")

reqSetDirection("DirectionA")

setDirection("DirectionA")

reqSetSpeed(Speed)

setSpeed(Speed)

displaySystemStatus(SystemStatus)

reqSetOpMode("Manual")

setOpMode("Manual")

reqSetAxis("AxisC")

setAxis("AxisC")

reqSetDirection("DirectionA")

setDirection("DirectionA")

reqSetSpeed(Speed)

setSpeed(Speed)

displaySystemStatus(SystemStatus)

reqCheckPosAxisK()

Proc3

reqCheckPosAxisK()

checkPosAxisK(StatusAxisK)

CheckPosAxisG(StatusAxisG)

checkPosAxisK(StatusAxisK)

CheckPosAxisG(StatusAxisG)

reqCheckStatusAxisC()

Proc2

checkStatusAxisC(StatusAxisC)

mvCmddAxisL_Slow()

reqDisplaySystemStatus()

reqCheckStatusAxisC()

checkStatusAxisC(StatusAxisC)

mvCmddAxisL_Slow()

reqDisplaySystemStatus()

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 17

Fundamentals of Harmony for Systems Engineering

2.2.4 Systems Engineering Hand-Off

In a Model-Driven Development the key artifact of the hand-off from
systems engineering to the subsequent system development is the
baselined executable Integrated System Architecture Model. This
model is the repository from which specification documents (e.g.
HW/SW Requirements Specifications, ICDs S) are generated. Scope
and content of the hand-off is dependent on the characteristics of the
project and the organizational structure systems engineering is
embedded.

If the SuD is one specific software configuation item (CI), systems
engineering may stop at the system functional analysis level. In this
case, the hand-off will be executable use case models.

From the organizational point of view, if there is a separation between
systems engineering and subsystems engineering, systems
engineering may stop at the first level of system architecture
decomposition. In this case the hand-off will be composed of relevant
executable subsystem models.

If systems engineers hand-off their specifications directly to HW/SW
development, the hand-off will be respective executable HW and/or
SW configuration item (CI) models.

In any of these cases the hand-off packages are composed of:

● Baselined executable CI model(s)
● Definition of CI-allocated operations and attributes including links to
 the associated system functional and performance requirements
● Definition of CI ports and logical – optionally operational - interfaces
● Definition of CI behavior, captured in a statechart diagram
● Test scenarios – also referred to as Integration Test Scenarios –
 derived from system-level use case scenarios
● CI-allocated non-functional requirements

It should be noted, that the baselined Integrated System Architecture
Model becomes the reference model for further development of
system requirements.

Harmony for SE Deskbook | 18 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Fundamentals of Harmony for Systems Engineering

2.3 Essential SysML Artifacts of Model-based Systems Engineering

SysML defines the standardized “vocabulary” of the language for
model-based systems engineering. As a standard, this vocabulary
needs to cover all possible applications. But SysML does not specify
how to apply these words. Systems engineering is strongly
communication driven. Systems engineers have to communicate with
stakeholders from different domains, like electrical engineers,
mechanical engineers, software engineers, test engineers, and - not to
forget - the customer who is not necessarily an engineer. In such an
environment it is paramount to keep the language domain independent
and as simple as possible. The goal should be to minimize the
amount of language elements. The fewer elements are used, the
better. The compliance to a standard does not mean that all elements
of this standard have to be applied. It is good practice to standardize
the usage of SysML within the organization, if a company wants to
deploy SysML-based systems engineering. This paragraph provides
an overview of the SysML artifacts that are considered essential in the
model-based systems engineering process Harmony for Systems
Engineering.

SysML reuses a subset of the UML 2.3 and extended it by systems
engineering specific constructs. Fig. 2-14 visualizes the relationship
between the UML and SysML by means of a Venn diagram, where the
set of language constructs that comprise the UML and SysML
languages are shown as circles marked UML 2.3 and SysML 1.2,
respectively. The intersection of the two circles indicates the UML
modeling constructs that SysML reuses (UML4SysML). In order to
provide a seamless transition from systems engineering to software
development, a respective process should focus on UML4SysML.

Fig. 2-14 Overview of UML/SysML Interrelationship

Fig. 2-15 Taxonomy of SysML Diagrams Used in
Harmony for Systems Engineering

Fig. 2-15 shows the taxonomy of SysML diagrams used in Harmony
for Systems Engineering. Essentially, there are three categories of
diagrams:

- Structure Diagram,
- Behavioral Diagram, and
- Requirements Diagram.

The color code of the Venn diagram is also applicable to this diagram.
Some of the diagrams have two colors. This indicates that SysML
extended the initial UML artifact.

The following paragraphs outline the usage of these diagrams in
Harmony for Systems Engineering. and list the elements that are
considered essential.

SysML Diagrams SysML Diagrams SysML Diagram

Block Definition Diagram

Internal Block Diagram

Structural Diagrams

Block Definition Diagram

Internal Block Diagram Internal Block Diagram

Structural Diagrams Structure Diagram

Use Case Diagram

Sequence Diagram

Activity Diagram

Statechart Diagram

Behavioral Diagrams

Use Case Diagram

Sequence Diagram

Activity Diagram

Statechart Diagram

Behavioral Diagrams Behavior Diagram Requirements Diagram Requirements Diagram Requirements Diagram

Parametric Diagram Parametric Diagram Parametric Diagram

UML 2.3 SysML 1.2

UML4SysML

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 19

Fundamentals of Harmony for Systems Engineering

2.3.1 Requirements Diagram

A Requirements Diagram graphically shows

• the relationship among textual requirement elements

(<<derive>>, containment)

• the relationship between requirements and model elements
(<<trace>>, <<satisfy>>), and

• the dependency between a requirement and a test case that
verifies that the requirement is met (<<verify>>).

Fig. 2-16 Requirements Diagram

2.3.2 Structure Diagrams

2.3.2.1 Block Definition Diagram

The SysML Block Definition Diagram is the equivalent to a class
diagram in the UML. It shows the basic structural elements (blocks) of
the system and their relationships / dependencies. Internal connectors
are not shown.

Fig. 2-17 Block Definition Diagram

2.3.2.2 Internal Block Diagram

The SysML Internal Block Diagram shows the realization of the system
structure defined in the Block Definition Diagram. It is composed of a
set of nested parts (i.e. instances of the system blocks) that are inter-
connected via ports and connectors.

Fig. 2-18 Internal Block Diagram

A1 A2

SuD
 block

SS_A
 « block

»
 1 1 1

SS_B
 « block

»
 1

A1 A1 A2

SuD
block

SS_A
« block

»
 1 1 1

SS_B
 «pSS1_10

block

»
 1

BDD_SuD

IBD_SuD

itsSuD
 1

itsSuD 1

itsSS_A
pSS_B

pA1

itsSS_B
pSS_A

pA2
 pA2

pA1

itsA1 1

pSuD

itsA2
pSuD

itsSS_A 1

pSS_B

pA1

itsSS_B 1

pSS_A
 pA2

itsA1

itsA2 1

SS_B
«block»

SRS_Req 1.1
«Requirement»

«satisfy»

SRS_Req 1.1.1.x
«Requirement»

«satisfy»

«derive»
SRS_Req 1.1.1

«Requirement»

«derive»

Uc2

«trace»«trace»

RD_Reqs

Containment
Relationship

Harmony for SE Deskbook | 20 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Fundamentals of Harmony for Systems Engineering

Ports

A port is a named interaction point between a block or a part and its
environment. It is connected with other ports via Connectors. The
SysML defines two types of ports: Standard Ports and Flow Ports.
The main motivation for specifying such ports on system elements is
to allow the design of modular reusable blocks, with clearly defined
interfaces.

Standard Ports

A UML/SysML Standard Port is a named interaction point assigned to
a block, through which instances of this block can exchange
messages. It specifies the services the owning block offers (provides)
to its environment as well as the services that the owning block
expects (requires) of its environment.

There are two different kinds of Standard Ports:

• Delegation or Relay ports forward requests to other ports.
• Behavioral ports are parts of the block that actually

implements the service.

Fig. 2-19 Standard Ports

A standard port is specified via its provided and required interfaces. A
provided interface (denoted by a lollipop symbol) specifies a set of
messages received at that port from elements outside the block. A
required interface (denoted by a socket symbol) specifies a set of
messages sent from that port to elements outside of the block. Thus,
by characterizing an interface as required or provided, the direction of
the constituent messages at the port is defined.

Flow Ports

A SysML Flow Port specifies the input and output items that may flow
between a block and its environment. Input and output items may
include data as well as physical entities, such as fluids, solids, gases,
and energy. The specification of what can flow is achieved by typing
the Flow Port with a specification of things that flow.

There are two different kinds of Flow Ports:

• An Atomic Flow Port relays a single item that flows in or out.
• A Non-Atomic Flow Port relays multiple items, listed in a

respective “flow specification”.

Fig. 2-20 Flow Ports

itsB 1

itsB1 1
pA

iA_B
pB2

iB2_B1

iB1_B2

itsB2 1
pB1

iB1_B2

iB2_B1

pA
iA_B

itsA 1
pB

iA_B

Provided

Interface

Required

Interface

Behavioral

Port Delegation
Port

itsB 1

itsB1 1
pA

iA_B
pB2

iB2_B1

iB1_B2

itsB2 1
pB1

iB1_B2

iB2_B1

pA 1

itsGPS 1
fp:NavDat

Elevation:double
Speed:double

itsSuD 1

Elevation:double
Speed:double

fp:NavDat

NavDat
« Interface »

« flowAttribute Longitude(Out):double
« flowAttribute Latitude(Out):double « »
« »

Atomic Flow Port

Non-Atomic Flow Port

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 21

Fundamentals of Harmony for Systems Engineering

2.3.2.3 Parametric Diagram

A Parametric Diagram is a special type of an Internal Block Diagram.
It visualizes the parametric relationship between system properties. It
is an integral part of technical performance measures and trade
studies.

Constraints among system properties are specified in Constraint
Blocks. Constraint blocks are defined in a Block Definition Diagram
and “used” in the Parametric Diagram by binding their parameters to
the specific properties of a block

Fig. 2-21 Constraint Block Definition in a Block Definition Diagram

Fig. 2-22 Parametric Diagram

2.3.3 Behavior Diagrams

UML/SysML provides four diagrams that express the functional and
dynamic behavior of a system:

• Use Case Diagram
• Activity Diagram
• Sequence Diagram and
• Statechart Diagram

Although each diagram focuses on a specific behavioral aspect, the
information provided by these diagrams overlap each other. For
instance, both the sequence diagrams and the activity diagrams
describe interactions. There may also be an overlap between the
behavior captured in activity diagram and the statechart diagram,
since SysML extended the UML activity diagrams by adding the
notation of dynamic behavior (control of actions).

In order to minimize the overlap between the different behavioral
diagrams, decisions should be made upfront, which role the individual
diagrams should play in the context of the modeling workflow. The
next step should be to “standardize” the usage of diagram elements by
filtering-out in each diagram those elements that are considered
essential.

ParD_TotalMass

itsNewtonLaw:NewtonLaw
1 «ConstraintProperty,ConstraintBlock»

force = mass * acceleration

force:Newtons
mass:Kg

acceletation:MetersPerSec^2

force
«Attribute» mass

«Attribute»

acceleration
«Attribute»

 BDD_MassConstraints

NewtonLaw
«ConstraintBlock»

Constraints
force = mass * acceleration

Attributes
mass:Kg
force:Newtons
acceleration:MetersPerSec^2

Harmony for SE Deskbook | 22 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Fundamentals of Harmony for Systems Engineering

2.3.3.1 Use Case Diagram

A Use Case Diagram captures the functional requirements of a system
by describing interactions between users of the system and the
system itself. Note that as a system is decomposed, users of a given
system could be external people or other systems. A use case
diagram comprises a system boundary that contains a set of use
cases. Actors lie outside of the system boundary and are bound to
use cases via associations.

A use case describes a specific usage (“operational thread”) of a
system:

• the behavior as perceived by the users (actors) and
• the message flow between the users and the use case.

A use case does not reveal or imply the system’s internal structure
(“black-box view”).

Fig. 2-23 Use Case Diagram

When use cases get too complex, dependencies between use cases
may be defined:

• <<include>>

One use case includes another
• <<extend>>

One use case provides an optional extension of another
• Generalization

One use case is a more specialized or refined version of another

2.3.3.2 Activity Diagram

An Activity Diagram is similar to the classic flow chart. It describes a
workflow, business process, or algorithm by decomposing the flow of
execution into a set of actions and sub activities joined by transitions
and various connectors. An activity diagram can be a simple linear
sequence of actions or it can be a complex series of parallel actions
with conditional branching and concurrency.

NOTE: In Harmony for Systems Engineering the terms activity, action
and operation are synonymous.

Actions may be grouped and assigned to objects – e.g. subsystems.
In this case, the activity diagram is split into swim lanes that depict the
respective responsibilities.

NOTE: Harmony for Systems Engineering uses a SysML activity pin
stereotyped ActorPin to visualize the interaction of an action/operation
with the environment. The name of the pin is the name of the
associated actor, the arrow in the pin shows the direction of the link.

Fig. 2-24 Activity Diagram

UCD_SuD

SuD

A1
 Uc2

Uc1

SuD

A2

A1
 Uc2

Uc1

SuD

A2 A2 A1

A1

AD_Uc2

op1
A1

[C1]
op2

[C1]

op3op4

[else][else]

op7
A2

op6

op5

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 23

Fundamentals of Harmony for Systems Engineering

2.3.3.3 Sequence Diagram

Sequence Diagrams elaborate on requirements specified in use cases
and activity diagrams by showing how actors and blocks collaborate in
some behavior. A sequence diagram represents one or more
scenarios through a use case.

A sequence diagram is composed of vertical lifelines for the actors and
blocks along with an ordered set of messages passed between these
entities over a period of time.

• Messages are shown as horizontal lines with open arrows between
the vertical object lines (lifelines).
NOTE: UML/SysML differentiates between synchronous and
asynchronous messages. In Harmony for Systems Engineering the
message-based communication is described via asynchronous
messages (two-line arrowhead).

• Operations are depicted as reflexive (synchronous) messages (full
arrowhead) at associated lifelines.

• Quality of Service (QoS) requirements may be added as comments
and/or constraints.

Fig. 2-25 Sequence Diagram

2.3.3.4 Statechart Diagram

A Statechart Diagram describes the state-based behavior of a block.
In the Harmony for Systems Engineering workflow it is considered the
most important behavior diagram, as it aggregates the information
from both the activity diagram (functional flow) and the sequence
diagrams (interactions with the environment), and adds to it the event-
driven block behavior. As the “language” of statecharts is formally
defined, the correctness and completeness of the resulting behavior
can be verified through model execution.

Statechart diagrams are finite statemachines that are extended by the
notation of

• Hierarchy
• Concurrency

Basically, a statechart diagram is composed of a set of states joined
by transitions and various connectors. An event may trigger a
transition from one state to another. Actions can be performed on
transitions and on state entry/exit

Fig. 2-26 Statechart Diagram

SCD_Uc1Ctrl

S1

op1

S2

S213

A21

S211
tm(5)/op4

[C1==true]/op3

ev2

S212 [else]/op5

ev1

setStatus to pA1

S22

tm(10)

/op2

reqDeactivateS2 reqActivateS2

ev1

tm(5)/op4
[C1==true]/op3

ev2

[else]/op5
tm(10)

/op2

reqDeactivateS2 reqActivateS2

SD_Uc1_Sc1

parallel parallel parallel

itsA1 itsUc1

C1==true

op1()

reqActivateS2()

op2()

setStatus()

op3()

op4()

reqDeactivateS2()
op1()

5 ms

op1()

op1()

10 ms
Interaction Operator

Harmony for SE Deskbook | 24 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Fundamentals of Harmony for Systems Engineering

2.3.4 Artifact Relationships at the Requirements
Analysis / System Functional Analysis Level

Fig. 2-27 shows, how the different SysML artifacts are related to each
other at the requirements analysis and system functional analysis
level.

• A Requirements Diagram visualizes the dependencies of at least 3
requirements.

• A Use Case Diagram contains minimum one Use Case.

• Use cases are traced to at least one requirement.

• A use case should always have one Activity Diagram that captures

the functional flow.

• A use case should be described by at least 5 Sequence Diagrams.

• When it comes to building an executable use case model, the

model is described by an Internal Block Diagram

• The Internal Block Diagram should contain instances of at least two

Blocks (use case block and actor block(s)).

• The block properties are described by operations, attributes, ports

and interfaces.

• The state-based behavior of each block instance is described by a

Statechart Diagram.

Fig. 2-27 SysML Artifacts Relationship at the
Requirements Analysis / System Functional Analysis Level

Functional Analysis Requirements Analysis

Use Case Diagram

Requirement

Use Case
1 1..*

1

1..*

Sequence Diagram 5..* 1

Activity Diagram 1

Block

Statechart Diagram
1

Operation1 1..*

1 1..* Attribute

1..*1 Port

1 3..*
Requirements Diagram

Interface1 1..*

Internal Block Diagram
11

1

2..*

is traced to

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 25

Fundamentals of Harmony for Systems Engineering

2.4 Service Request-Driven Modeling Approach

In the Service Request-Driven Approach, the communication between blocks is based on asynchronous messages (“service requests”) via SysML
Standard Ports. A service request always is followed by an associated provided service at the receiving part – either state/mode change or operation.
First, the service requests and associated operations have no arguments. At a later stage arguments may be added to the service requests and
associated operations or listed in the associated description field of the relevant service request and associated operation.

The approach is performed in four steps:

It starts with the definition of the network
nodes by means of SysML structure
diagrams, using blocks as the basic
structure elements. First, these blocks are
empty and not linked.

In the next step, the communication between
the blocks is described in a UML/SysML
Sequence Diagram.
NOTE: In the Rhapsody tool the Sequence
Diagram may be automatically generated
from an underlying Activity Diagram by
means of the SE Toolkit (ref. Section 4.4.1.3).

The next step is the allocation of the service
requests and operations to respective blocks.
NOTE: In the Rhapsody tool this step is
automated through the Auto Realize feature.

Based on the allocated service requests, the
associated SysML Standard Ports and
interfaces now can be defined.
NOTE: In the Rhapsody tool this step is
semi-automated by means of the SE-Toolkit
(ref. Section 4.4.1.4).

3

1

4

2

IBD_SuD

operation2()

operation4()

itsB1 itsB2

operation1()

reqOperation2()

reqOperation3()

operation3()

reqOperation4()

reqOperation1()

ModeX

reqSetMode(ModeX)

IBD_SuD

itsB1:B1

1

reqOperation2
 reqOperation4

operation2
 operation4

pB2

iB2_ B1

iB1 _B2

B2

1

reqSetMode

reqOperation1

reqOperation3

operation1
 operation3

pB1

iB1_ B2

iB2_ B1

B2

1

reqSetMode

reqOperation1

reqOperation3

operation1
 operation3

pB1

itsB2:B2

1

reqSetMode
 reqOperation1

reqOperation3

operation1

 operation3

pB1

iB1_to_B2

Interface

reqOperation2
 reqOperation4

iB2_to_B1

« Interface »

reqSetMode
 reqOperation1

reqOperation3

iB1_to_B2

« Interface »

reqOperation2
 reqOperation4

reqSetMode
 reqOperation1

4

1
itsB1:B1

1
 1
 itsB2:B2

1
 1

3
itsB1:B1

1

reqOperation2

reqOperation4

operation2

operation4

B2

1

reqSetMode

reqOperation1

reqOperation3

operation1

operation3

pB1

B2

1

reqSetMode

reqOperation1

reqOperation3

operation1

operation3

pB1

itsB2:B2

1

reqSetMode

reqOperation1

reqOperation3

operation1

operation3

IBD_SuD

2

Harmony for SE Deskbook | 26 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Rhapsody Project Structure

3 Rhapsody Project Structure

This section describes the project structure that should be followed when the Rhapsody tool is used in a model-based systems engineering project.
The details are shown considering as an example the Security System Model of the Deskbook case study.

3.1 Project Structure Overview

On the top-level, the project structure shows two types of packages:

• Packages that contain the artifacts generated in the different SE-
 phases, i.e.

- RequirementsAnalysisPkg
- FunctionalAnalysisPkg
- DesignSynthesisPkg

• Packages that contain system-level model definitions, i.e.

- ActorPkg
- InterfacesPkg and
- TypesPkg

Project Structure Overview

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 27

Rhapsody Project Structure

3.2 Requirements Analysis Package

Constituents of the RequirementsAnalysisPkg are

• RequirementsPkg and
• UseCaseDiagramsPkg

The RequirementsPkg contains the system requirements (“shall”
statements) generated from the stakeholder requirements and
imported from DOORS.

During the system functional analysis and design synthesis phase
additional requirements may be identified. Temporarily, they will be
located in the DerivedRequirementsPkg. Once they are approved
through model execution, the system requirements database in
DOORS will be updated accordingly. The updated system
requirements then are exported from DOORS to Rhapsody and linked
to the associated model artifacts.

The UseCaseDiagramsPkg contains the use cases incl the system
requirements related dependencies, the actors as well as the use case
diagram(s)

NOTE: Initially, use cases and actors are located in the
UseCasesPkg. In the system functional analysis phase the use cases
are moved into respective use case packages in the
FunctionalAnalysisPkg and the associated actors are moved into the
ActorsPkg.

Requirements Analysis Package

Harmony for SE Deskbook | 28 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Rhapsody Project Structure

3.3 Functional Analysis Package

System functional analysis in Harmony for Systems Engineering is use
case based. Each use case of the system-level use case diagram(s) is
translated into an executable model. The FunctionalAnalysisPkg
contains the artifacts generated in the system functional analysis phase.

For each use case of the use case diagram, there is a package
<UseCaseName>Pkg that contains the associated model artifacts:

• A category Blocks containing the definition of the use case block

Uc_<UseCaseName>. This block includes the associated statechart
diagram.

• A folder Internal Block Diagrams with the internal block diagram

IBD_<UseCaseName>

• A folder Packages that contains

- A package <UseCaseName>_ExecutionScopePkg that defines
the context of the use case model execution, i.e. the instances of
the actor(s) and the use case block as well as the definition of their
links.

- A package <UseCaseName>_BBScenariosPkg which holds the
use case scenarios.

• A category Use Cases with the use case descriptions, i.e.

- The category Activity Views which contains the black-box activity
diagram <UseCaseName>_BlackBoxView and a folder
Sequences that contains the references to use case scenarios,
which were derived from the black-box activity diagram (ref.
Section 4.4.1.3).

- The category Association Ends which contains the definitions of the
associations between the actor(s) and the use case.

- The category Dependencies which contains the trace dependencies
between the use case and the associated system requirements.

Functional Analysis Package

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 29

Rhapsody Project Structure

3.4 Design Synthesis Package

The DesignSynthesisPkg is partitioned into two packages

• ArchitecturalAnalysisPkg and
• ArchitecturalDesignPkg

Design Synthesis Package

3.4.1 Architectural Analysis Package

The ArchitecturalAnalysisPkg contains the artifacts that are created
when a trade-off analysis is performed prior to the architectural design.
For details please refer to Section 4.5.1.

Architectural Analysis Package

Harmony for SE Deskbook | 30 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Rhapsody Project Structure

3.4.2 Architectural Design Package

Constituents of the ArchitecturalDesignPkg are:

• A folder Block Definition Diagrams with the SuD level 1 block

definition diagram BDD_<SuDName>

• A category blocks containing the definitions of the SuD block,

including instances of its parts and the definition of associated
Delegation Ports.

• A folder Internal Block Diagrams with the internal block diagram of

the SuD system architecture IBD_<SuDName>

• A folder Packages that contains

- An ExecutionScopePkg which defines the context of the
architectural model execution, i.e. the instances of the actor(s) and
the SuD block as well as the definition of their links.

- A package <Block>DecompositionPkg the constituents of which

are:

• Packages <Part>Pkg, each of which holds the definitions of
the relevant part. If a part is further decomposed, it will
contain a package <Part>DecompositionPkg with packages
of its associated sub-blocks each of which will be
decomposed according to the outlined structure.

• A package <Block>WB_AD which contains the decomposed
white-box activity diagram(s) of the system use case(s),

• A package <Block>WB_UcSD which holds the decomposed
system use case scenarios,

Architectural Design Package

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 31

Rhapsody Project Structure

3.5 System-Level Definitions

On the top-level of the project structure there are three packages for
system-level definitions:

• ActorPkg
• InterfacesPkg

• TypesPkg

The ActorPkg contains the definitions of all the actors identified in the
system-level use case diagram(s). Each actor may contain a
statechart diagram.

The InterfacesPkg contains the definition of interfaces and associated
events. The interfaces may be grouped in packages corresponding to
the associated use case model(s) and the system architecture model.

The TypesPkg contains the system-level data definitions.

System-Level Definitions

Harmony for SE Deskbook | 32 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Introduction

4 Case Study: Security System

Harmony for Systems Engineering is tool independent. In this section a case study exemplifies, how the workflow that was outlined in the previous
sections is applied using the Rhapsody tool. The chosen example is a Security System.
The Rhapsody tool supports model-based systems engineering through a special add-on – the SE-Toolkit. This toolkit contains features that
automate many of the tasks in a systems engineering workflow. It should be noted, that most of these features are process-independent. The focus
of this case study is on the usage of these features in the different phases of Harmony for Systems Engineering.

4.1 Case Study Workflow

Fig. 4-1 provides an overview of the MbSE workflow followed
in the case study. It shows for each of the SE phases the
generated key handoff artifacts together with the associated
Rhapsody projects. The reason for splitting the workflow into
different Rhapsody projects is, that it supports the
collaboration of distributed teams.

The workflow is use case based. It starts with the import of
the elaborated system requirements from DOORS to the
Rhapsody project <SuD Name>_RA and the definition of the
system-level use cases. The handoff to the subsequent
functional analysis phase are the use cases and the
associated system requirements.

In the functional analysis phase the chosen use cases are
transformed into executable black-box (BB) use case
models. The modeling is performed for each use case in a
separate Rhapsody project (Uc<Nr><Use Case Name>).
The verified/validated black-box use case models and
associated functional requirements are the input to the
subsequent design synthesis phases.

Architectural analysis is performed in a separate Rhapsody
project <SuD Name>_AA based on the verified/validated
functional system requirements. Additionaly, non-functional
requirements (design constraints) are taken into
consideration. The elaborated system architecture structure
is the handoff to the subsequent architectural design phase.

Fig. 4-1 MbSE Workflow and Associated Rhapsody Projects

Define & Rank System-Level Use Cases

SystemReqs

UcAndSysReqs

Analyze BB UC1

BB_UC1_Model

UcAndSysReqs

Analyze BB UCn

BB_UCn_Model

UcAndSysReqs

Perform Trade Study

SystemArchitectureStructure

Realize UC1

RealizedUC1

SystemArchitecture
Structure

Realize UCn

RealizedUCn

SystemArchitecture
Structure

Merge Realized Use Cases

IntegratedSystemArchitecture

RealizedUCn RealizedUc1

Requirements Analysis

Functional Analysis

Architectural Analysis

Architectural Design

Rhapsody Project
<SuD Name>_RA

Rhapsody Project
<SuD Name>_IA

Rhapsody Project
<SuD Name>_AA

Rhapsody Project
Uc<Nr><Use Case Name>

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 33

Case Study: Introduction

Architectural design is performed in two steps.

First, each of the black-box use case models is realized, i.e.
transformed into a white-box model based on the system architecture
structure provided by the architectural analysis model. The realization
is performed in respective Rhapsody projects defined in the functional
analysis phase.

The correctness and completeness of each realized use case model is
verified through model execution.

Once all use cases of an increment are realized, they are merged in
the Integrated System Architecture model. The merger is performed in
a separate Rhapsody project <SuD Name>_IA.

The baselined Integrated System Architecture model is the key artifact
of the handoff to the subsequent system development. It is the
repository from which specification documents (HW/SW Requirements
Specifications, ICD’s , S) are generated.

4.2 Creation of a Harmony Project Structure

A Harmony for Systems Engineering compliant project structure (ref.
Section 2) may be created by means of the SE-Toolkit feature Create
Harmony Project.

Start Rhapsody

In the main menu select File > New
Enter project name (e.g. SecuritySystem) and
select/define the associated project directory.

Select the SysML profile and create project..

Add the Harmony profile:
In the main menu select File / Add Profile to Model
Double-click Harmony
Double-click Harmony.sbs

Right-click the project name in the browser and
select SE-Toolkit > Create Harmony Project.

5

3

2

1

4

5

Harmony for SE Deskbook | 34 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Requirements Analysis

4.3 Requirements Analysis

The workflow followed in the case study is shown in Fig. 4-2. It starts
with the import of the stakeholder requirements and derived system
requirements – both captured as Word documents – into Doors. Once
imported, the system requirements are linked to the stakeholder
requirements via <<satisfy>> dependency and the complete coverage
will be ensured
The next step in the Requirements Analysis workflow is the export of
the system requirements from DOORS to Rhapsody. This is
performed via Rhapsody Gateway.

In Rhapsody, the imported system requirements are grouped into use
cases and respective <<trace>> links from the use cases to the
system requirements are established.
Subsequently, the use cases incl. their links are exported from
Rhapsody via Gateway to DOORS.

It should be noted that the outlined workflow will be applied whenever
there will be a change or update of the requirements.

Fig. 4-2 Requirements Analysis Workflow

DOORS Gateway Rhapsody _RA Project

StakehoderReqs

SystemReqs

Populate RequirementsPkg

Define System-Level Use Cases

Create Module
SecSysStakehoderRequirements

Create Module
SecSysSystemRequirements

Create
SecSysUseCases Module

Link
SecSysSystemReqs to StakeholderReqs

Link
SystemReqs to Use Cases

Export Use Cases incl. Links
 to DOORS

Import System Requirements

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 35

Case Study: Requirements Analysis

4.3.1 DOORS: Import of Stakeholder
Requirements

Open DOORS. In the Database Explorer,
select the project SecuritySystem.

Open in the volume included to this Deskbook the Word document
SecSys Stakeholder Requirements 4.0.doc

In the Word toolbar, click on the Export to DOORS icon.

Specify the Module Name:
SecSysStakeholderRequirements. Specify Prefix: SH.

Click Export.

Switch to DOORS and save the new module.

Stakehoder Requirements Inported into DOORS

1

6

5

4

2

3

Harmony for SE Deskbook | 36 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Requirements Analysis

4.3.2 DOORS: Import of System Requirements

Open DOORS. In the Database Explorer,
select the project SecuritySystem.

Open in the volume included to this Deskbook the Word document
SecSys System Requirements 4.0.doc

In the Word toolbar, click on the Export to DOORS icon.

Specify the Module Name:
SecSysSystemsRequirements. Specify Prefix: SYS.

Click Export.

Switch to DOORS and save the new module.

1

6

5

4

2

3

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 37

Case Study: Requirements Analysis

System Requirements Imported into DOORS

Harmony for SE Deskbook | 38 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Requirements Analysis

4.3.3 Linking System Requirements to Stakeholder Requirements

In the DOORS Database Explorer
select the SecuritySystem project.

In the menu, select File / New / Link ModuleF

Name the link module satisfy and click OK

In the pop-up window select Create new linkset.

For the Source module, click BrowseS and
select the module SecSysSystemsRequirements.
For the Target module, click BrowseS and
select the module SecSysStakeholderRequirements.

Click OK.

1

6

5

4

2

3

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 39

Case Study: Requirements Analysis

Open the SecSysSystemsRequirements module.
Go to File / Module Properties.

In the Linksets tab, click Add.

For the Target module,
select the SecSysStakeholderRequirements module.
For the Link module,
select the satisfy link module.

Tick the “Mandatory” box.

In the Linksets tab, tick
Only allow outgoing links to the target modules in the above list.

NOTE: This will prevent accidental links created in the wrong
direction.

Click OK.

9

8

7

10

12

11

Harmony for SE Deskbook | 40 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Requirements Analysis

With the SecSysStakeholderRequirements and
SecSysSystemsRequirements modules both open on the screen,
drag a System Requirement onto the appropriate Stakeholder
Requirement. Select Make Link from Start to establish the link.
Repeat to create all necessary links.

13

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 41

Case Study: Requirements Analysis

4.3.4 DOORS -> Gateway -> Rhapsody:
Import of System Requirements

The import of the system requirements from DOORS into Rhapsody is
performed in two steps. First the requirements are imported into the
Rhapsody Gateway tool. Then the requirements are imported from
Gateway into Rhapsody, i.e. the Rhapsody project SecSys_RA.

Create a Harmony compliant Rhapsody project (ref. Section 4.2)
and name it SecSys_RA.

In the Rhapsody browser right-click SecSys_RA and select
Rational Rhapsody Gateway / Open

Import Requirements into Gateway

Select File / Edit Project to open the configuration window

Add a document to the canvas and name it SecSysReq

Add a coverage link from UML Model to SecSysReq

Select as Type of Analysis DOORS Harmony

Select in the File or .. pop-up window
DOORS Database / SecuritySystem / SecSysRequirements

Tick Extract only defined attributes and confirm (OK)

Confirm the Configuration setup (OK)

Import Requirements into Rhapsody

In the Coverage Analysis View select UML Model and
Tools / Add high level requirements

In the pop-up window select as Root package for requirements
RequirementsPkg

Confirm setup (OK)

1

9

8

7

6

5

4

2

3

10

11

12

Harmony for SE Deskbook | 42 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Requirements Analysis

Imported System Requirements in SecSys_RA

4.3.5 Definition of System-Level Use Cases

The system requirements of the Security System are grouped into two
use cases:

• Uc1ControlEntry
• Uc2ControlExit

The associated actors are

• User
• Administrator
• Camera and
• Access Point

Open UCD_SecuritySystem and draw the use case diagram with the
two use cases and the associated actors.

Use Case Diagram of the Security System

In order to support the update in case of requirements changes, define
the use cases as Units:

Right-click the use case and select Create Unit.

UserUser

AdminAdmin AccessPointAccessPoint

CameraCamera

Security System

Uc1ControlEntry

Uc2ControlExit

UCD_SecuritySystem

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 43

Case Study: Requirements Analysis

4.3.5.1 Linking Requirements to Use Cases

System functional and non-functional system requirements are linked
to the use case with a <<trace>> dependency by means of the SE-
Toolkit feature Create Dependency.

NOTE: A system requirement may be associated to more than one
use case.

Exemplary, the linking process is shown for the use case
Uc1ControlEntry.

In the Tools Menu select
Tools > SE-Toolkit > Modeling Toolbox

In the dialog box select Dependencies.
Select Profile: PredefinedTypes
Select Stereotype: trace.

In the UseCaseDiagramsPkg
select use case Uc1ControlEntry.

In the ModelingToolbox dialog box
click Set Source.

In the SecSysReq package
select the requirements the use case is linked to.

In the ModelingToolbox dialog box
click Set Destination.

In the ModelingToolbox dialog box
click Create Dependency with Stereotype.

2

4 6

7

3

5

4

1

6

7

2

5

3

Harmony for SE Deskbook | 44 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Requirements Analysis

Visualization of the Use Case Links to the Functional / Non-Functional System Requirements (Matrix View)

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 45

Case Study: Requirements Analysis

Visualization of the Requirements Coverage in Gateway

NOTE: The system requirements Security Lockdown and Emergency Exit
intentionally were not linked to any use case

Harmony for SE Deskbook | 46 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Requirements Analysis

4.3.6 Rhapsody -> Gateway -> DOORS:
Export of Use Cases

In the Coverage Analysis View select UML Model and
Tools / Export Documents to DOORS

In the Source (UML Model) window and Types window
Deselect all links

In the Source (UML Model) window select UCD_SecuritySystem

In the Types window select
- Elements / Use Case and
- Links / Trace

Click Update Tree button and select SecuritySystem

Define as DOORS New module SecSysUseCases

Click Export

3

5

4

1

6

7

2

2

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 47

Case Study: Requirements Analysis

DOORS Database and Links between Stakeholer Requirements, System Requirements and System Use Cases

Harmony for SE Deskbook | 48 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: System Functional Analysis

4.4 System Functional Analysis

System functional analysis is use case based. Each use case is
translated into an executable model. The model and the underlying
requirements then are validated through model execution.
Exemplarily, the two use cases Uc1ControlEntry and Uc2ControlExit
will be translated into executable models.

The system functional analysis workflow is supported by a number of
features of the Rhapsody SE-Toolkit. Fig. 4-3 details the workflow
and lists its support through the SE-Toolkit in the respective phases.

NOTE: In the case study, the chosen approach essentially follows the
“Alternative 2” approach described in Section 2.2.2 .

Fig. 4-3 System Functional Analysis Workflow and its Support through the Rhapsody SE-Toolkit

Define
Use Case Model Context

Define
UC Functional Flow

Derive
UC Scenarios

Define
Ports and Interfaces

Define
UC Behavior

Verify UC Model
through Model Execution

SE Toolkit Feature:
Create Ports And Interfaces

SE-Toolkit Feature:
Create System Model from Use Case

SE-Toolkit Feature:
• Create New Scenario from Activity Diagram

• Perform Activity View Consistency Check

SE-Toolkit Feature:
• Add Actor Pins

SE-Toolkit Feature:
Create Dependency

Link
UC Model Properties to

System Reqs

System Level Use Case and
System Requirements

Baselined
BB Use Case Model

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 49

Case Study: System Functional Analysis

4.4.1 Uc1ControlEntry

4.4.1.1 Definition of Model Context

The elaboration of of the use case Uc1ControlEntry will be performed
in a separate Rhapsody project.

Create a Harmony compliant Rhapsody project and
name it Uc1ContolEntry

In the Rhapsody main menu select File > Add to Model As unit
navigate to the SecSys_RA project and
double-klick SecSys_RA.rpy

In the dialog box select

- UseCaseDiagramsPkg.sbs,
- RequirementsPkg.sbs

Click Ok,

In the imported use case diagram UCD_SecuritySystem
you may Delete from Model the use case Uc2ControlExit.

Imported UCD_SecuritySystem

Uc1ConrolEntry-focused Project Structure

1

4

3

2

UserUser

AdminAdmin AccessPointAccessPoint

CameraCamera

Security System

Uc1ControlEntry

Uc2ControlExit

UCD_SecuritySystem

Harmony for SE Deskbook | 50 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: System Functional Analysis

Uc1ControlEntry related System Requirements

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 51

Case Study: System Functional Analysis

A Functional Analysis project structure that complies with the
recommended one outlined in Section 3.3, may be created
automatically by means of the SE-Toolkit feature Create System
Model From Use Case.

Right-click use case Uc1ControlEntry and select
SE-Toolkit / Create System Model From Use Case.

Uc1ControlEntry associated actor blocks are moved into the
ActorPkg.

IBD_Uc1ControlEntry contains the instances of the actors and
the use case block created through the SE-Toolkit feature (no
links between the parts).

System Block Uc_Uc1ControlEntry created through the SE-
Toolkit feature.

The use case - incl. its requirements links – is moved into the
Uc1ControlEntryPkg in the FunctionalAnalysisPkg. Additionally,
the Toolkit feature created an empty Activity Diagram
(Uc1ControlEntryBlackBoxView).

1

2

4

3

5

2

3

5

4

UCD_SecuritySystem

UserUser

AdminAdmin AccessPointAccessPoint

CameraCamera

Security System

Uc1ControlEntry

1

Harmony for SE Deskbook | 52 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: System Functional Analysis

4.4.1.2 Definition of Functional Flow

There is always a discussion whether actor swim lanes should be
shown in an activity diagram. In many cases this may lead to “messy”,
hard to read diagrams. Focus of the activity diagram should be on the
system’s internal functional flow.
A recommended alternative is to capture the interactions of an action
with the environment by means of a SysML Action Pin, stereotyped
ActorPin (e.g. readSecurityCard). In this case the name of the
ActorPin must be the name of the associated actor. The arrow in the
pins shows the direction of the respective link (i.e. In, Out or In/Out).
The creation of actor pins is supported by the SE-Toolkit (right-click on
the relevant action and select Add Actor Pins).
The SE-Toolkit feature Create New Scenario From Activity Diagram
uses the pin information when deriving sequence diagrams from the
activity diagram.

NOTE: The action node resetAlarm – initiated by the Administrator –
was added although there is no respective system requirement. It is
considered a derived requirement. Derived requirements are
stereotyped <<DerivedRequirement>> and stored – temporarily (!) - in
the DerivedRequirementsPkg.

 If an activity diagram contains too many details, some
actions may be placed in a Reference Activity Diagram. Do
not use SubActivity Diagrams because these can contain
actions only for a single swim lane. In the later white-box
activity diagrams the actions may span a number of swim
lanes.

readSecurityCard

User

validateSecurityCard

[CardStatus=="Valid"][CardStatus=="Valid"]

[else]

scanBiometricData

User
[else]

authenticateBiometricData

[else]

flagBiometricScanFailure

[else]

[else][else]

[else]

flagSecurityCardFailure

[else]

[else][else]

[AuthenticationStatus==
"Authenticated"]

logEntryData

[AuthenticationStatus==
"Authenticated"]

disableUserAccount

[BsFailCount==3]

[ScFailCount==3]

[BsFailCount==3]

[ScFailCount==3]

displayCardStatus

displayAuthenticationStatus

logAccountData

alarm

reqUnlockAccessPoint

«MessageAction»

AccessPoint

evAccessPointLocked

«MessageAction»

AccessPoint
resetAlarm

Admin

[else][else]

reqTakeSnapshot

«MessageAction»

Camera

[First Request][First Request]

evAccessPointUnlocked

«MessageAction»

AccessPoint

reqLockAccessPoint

«MessageAction»

AccessPoint

reqProcessAlert

«MessageAction»

Admin

> t_Bs> t_Bs

t_Unlockedt_Unlocked

Uc1ControlEntryBlackBoxView

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 53

Case Study: System Functional Analysis

4.4.1.3 Derivation of Black-Box Use Case Scenarios

Use case scenarios are derived from the black-box activity
diagram by means of the SE-Toolkit feature Create New Scenario
From Activity Diagram.

In the activity diagram window right-click and select
SE-Toolkit > Generate Sequence Diagram.

 In the ModelingToolbox dialog box tick
Create Messages from Pins and
Create Events.

Hold down Ctrl and select in the black-box
activity diagram a sequence of actions.

1
)

In the ModelingToolbox dialog box
click Set Source.

In the ModelingToolbox dialog box click
Create New Scenario From
Activity Diagram.

NOTE:
The created Sequence Diagram
is automatically stored in the
Uc1ControlEntryBBScenariosPgk

1
) Alternatively select a single action as the source.

The tool will auto-create the sequence until it
reaches a condition connector. The user is then
given the choice of which path to take.

5

3

1

4

2

Uc1ControlEntryBlackBoxView

3

4

5

2

Harmony for SE Deskbook | 54 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: System Functional Analysis

Derived Use Case Scenario BB_Uc1Sc1 Nominal

BB_Uc1Sc1 Nominal

:User :Uc_Uc1ControlEntry

CardStatus=="Valid"

AuthenticationStatus==

"Authenticated"

scanBiometricData()

authenticateBiometricData(AuthenticationStatus)

displayAuthenticationStatus(AuthenticationStatus)

logEntryData()

reqReadSecurityCard()

t_Bs

readSecurityCard()

t_Unlocked

validateSecurityCard(CardStatus)

reqScanBiometricData()

displayCardStatus(CardStatus)

scanBiometricData()

authenticateBiometricData(AuthenticationStatus)

displayAuthenticationStatus(AuthenticationStatus)

logEntryData()

reqReadSecurityCard()

t_Bs

readSecurityCard()

t_Unlocked

validateSecurityCard(CardStatus)

reqScanBiometricData()

displayCardStatus(CardStatus)

reqUnlockAccessPoint()

:AccessPoint

evAccessPointUnlocked()

reqLockAccessPoint()

evAccessPointLocked()

reqUnlockAccessPoint()

evAccessPointUnlocked()

reqLockAccessPoint()

evAccessPointLocked()

:Camera

reqTakeSnapshot()reqTakeSnapshot()

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 55

Case Study: System Functional Analysis

Activity View Consistency Check

The consistency between actions of the black-box Activity Diagram
and the operations in the derived use case scenarios may be checked
by means of the of the SE-Toolkit feature Perform Activity View
Consistency Check.

For the selected Activity View the feature checks whether

• Each action on the activity diagram appears on at least one of the
sequence diagrams referenced by the Activity View

• Each operation on the referenced sequence diagrams appears at
least once on the activity diagram

Right-click Uc1_ControlEntryBlackBoxView > Activity and select
SE-Toolkit > Perform Activity View Consistency Check.

The screenshot above shows the result of the consistency check after
the first use case scenario was generated. It lists those operations
that have not yet been addressed. They will be captured in the
following exception scenarios.

1

1

Harmony for SE Deskbook | 56 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: System Functional Analysis

Derived Use Case Scenario BB_Uc1Sc2 Exception CardReaderEntry

Derived Use Case Scenario BB_Uc1Sc3 Exception BiometricScan

:User

reqReadSecurityCard()

:Uc_Uc1ControlEntry

CardStatus=="Not Valid"

ScFailCount=3

reqReadSecurityCard()

readSecurityCard()

validateSecurityCard(CardStatus)

displayCardStatus(CardStatus)

flagSecurityCardFailure(ScFailCount)

disableUserAccount()

logAccountData()

alarm()

resetAlarm()

readSecurityCard()

validateSecurityCard(CardStatus)

displayCardStatus(CardStatus)

flagSecurityCardFailure(ScFailCount)

disableUserAccount()

logAccountData()

alarm()

resetAlarm()

reqProcessAlert(AlertType)

:Admin

reqProcessAlert(AlertType)

reqResetAlarm()reqResetAlarm()

BB_Uc1Sc2 Exception CardReaderEntry BB_Uc1Sc3 Exception BiometricScan

:User

reqScanBiometricData()

:Uc_Uc1ControlEntry

AuthenticationStatus==
"Not Authenticated"

BSFailCount=3

reqScanBiometricData()

scanBiometricData()

authenticateBiometricData(AuthenticationStatus)

displayAuthenticationStatus(AuthenticationStatus)

flagBiometricScanFailure(BsFailCount)

disableUserAccount()

logAccountData()

alarm()

resetAlarm()

scanBiometricData()

authenticateBiometricData(AuthenticationStatus)

displayAuthenticationStatus(AuthenticationStatus)

flagBiometricScanFailure(BsFailCount)

disableUserAccount()

logAccountData()

alarm()

resetAlarm()

reqProcessAlert(AlertType)

:Admin

reqProcessAlert(AlertType)

reqResetAlarm()reqResetAlarm()

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 57

Case Study: System Functional Analysis

4.4.1.4 Definition of Ports and Interfaces

The definition of ports and associated interfaces is automated in
Rhapsody by means of the SE-Toolkit feature Create Ports And
Interfaces. Pre-condition: All messages and operations in the
sequence diagrams are realized.

Naming convention for ports: p<Target Name>
Interface names are referenced to the sender port.
Naming convention: i< Sender >_< Receiver >

Internal Block Diagram IBD_Uc1_ControlEntry with Ports and Interfaces

Right-click the package
Uc1_ControlEntry_BBScenarios and select
SE-Toolkit > Create Ports And Interfaces.

Connect ports either manually or right-click in the IBD
and select SE-Toolkit > Connect Ports

NOTE: The interface definitions and
associated event definitions are allocated in
the InterfacesPkg.

2

1

For readability reasons it is recommended not to show the interface
names in the diagram. Deselect in each block the Display Option
Show Port Interfaces.

1

IBD_Uc1_ControlEntry

itsUc_Uc1ControlEntry1

pAdmin

iAdmin_Uc_Uc1ControlEntry

iUc_Uc1ControlEntry_Admin

pAccessPoint

iAccessPoint_Uc_Uc1ControlEntry

iUc_Uc1ControlEntry_AccessPoint

pCamera

iUc_Uc1ControlEntry_Camera

pUser

iUser_Uc_Uc1ControlEntry

itsCamera1

pUc_Uc1ControlEntry

iUc_Uc1ControlEntry_Camera

itsUser1

pUc_Uc1ControlEntry

iUser_Uc_Uc1ControlEntry

itsAdmin1

pUc_Uc1ControlEntry

iUc_Uc1ControlEntry_Admin

iAdmin_Uc_Uc1ControlEntry
itsAccessPoint1

pUc_Uc1ControlEntry

iUc_Uc1ControlEntry_AccessPoint

iAccessPoint_Uc_Uc1ControlEntry

Harmony for SE Deskbook | 58 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: System Functional Analysis

4.4.1.5 Definition of Use Case Behavior

The state-based behavior of the use case block is described by a
Statechart Diagram. The use case Statechart Diagram represents the
aggregate of all flows in the black-box Activity Diagram and the
associated Sequence Diagrams. Guidelines how to derive a
Statechart Diagram from the information captured in the Activity
Diagram and Sequence Diagrams are documented in the Appendix.

Uc1ControlEntryCtrl

WaitForEntryRequest

UnlockingAndLockingAccessPoint

reqTakeSnapshot to pCamera

reqReadSecurityCard/

readSecurityCard();

reqProcessAlert("User Access Disabled") to pAdmin

ProcessingSecurityCardData

CardValid Fail3Times

/disableUserAccount();

logAccountData();

alarm();

ProcessingBiometricData

Failed3Times

/disableUserAccount();

logAccountData();

alarm();

BsTimeoutAuthenticated

/logEntryData();

A

evAccessPointLocked

A

A

WaitForResetAlarm

reqResetAlarm/

resetAlarm();

reqReadSecurityCard/

readSecurityCard();

/disableUserAccount();

logAccountData();

alarm();

/disableUserAccount();

logAccountData();

alarm();

/logEntryData();

evAccessPointLocked

reqResetAlarm/

resetAlarm();

1

2

3

UnlockingAndLockingAccessPoint

AccessPointUnlocked

LockingAccessPoint

UnlockingAccessPoint

evAccessPointUnlocked

reqUnlockAccessPoint to pAccessPoint

reqLockAccessPoint to pAccessPoint

tm(t_Unlocked)

evAccessPointUnlocked

tm(t_Unlocked)

3

ProcessingBiometricData

AuthenticatingBiometricData

authenticateBiometricData(AuthenticationStatus); displayAuthenticationStatus(AuthenticationStatus);

BiometricScanFailure

flagBiometricScanFailure(BsFailCount);

waitForBiometricScanRequest

reqScanBiometricData/
scanBiometricData();

WaitForBiometricScanRequest

reqScanBiometricData/
scanBiometricData();

[AuthenticationStatus=="Not Authenticated"]

[else] Failed3Times

[BsFailCount=3]

BsTimeout

tm(t_Bs)

Authenticated[else]

/BsFailCount=0;

reqScanBiometricData/
scanBiometricData();

/BsFailCount=0;

reqScanBiometricData/
scanBiometricData();

[AuthenticationStatus=="Not Authenticated"]

[else]

[BsFailCount=3]

tm(t_Bs)

[else]

2

ProcessingSecurityCardData

ValidatingSecurityCardData

validateSecurityCard(CardStatus); displayCardStatus(CardStatus);

SecCardFailure

flagSecurityCardFailure(ScFailCount);

WaitForEntryRequest

reqReadSecurityCard/

readSecurityCard();

[ScFailCount <3]

[CardStatus=="Not Valid"]

Fail3Times[else]

CardValid[else]

/ScFailCount=1;/ScFailCount=1;

reqReadSecurityCard/

readSecurityCard();

[ScFailCount <3]

[CardStatus=="Not Valid"]

[else]

[else]

1

A statechart should be hierarchically structured. This
allows the reuse of behavior-patterns in later phases (e.g.
Use Case Realization).

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 59

Case Study: System Functional Analysis

In order to execute the use case model closed-loop, also the behavior
of the actors has to be captured. The Rhapsody SE-Toolkit provides
a feature that automatically generates the actor behavior based on the
actor’s provided/required interface information:

In the use case Internal Block Diagram right-click the User block and
select SE-Toolkit / Create Test Bench.

This toolkit feature captures the User behavior in one state (Active)
using MOORE syntax (= action in state). and includes already the
capability to run model execution via Webify.

Repeat the step for the actor blocks Admin and Camera.

Alternatively, the actor behavior may be captured in a more detailed
Statechart Diagram:

In the use case Internal Block Diagram right-click the
AccessPoint block and select Class / New Statechart.

Capture manually the actor behavior in a state machine.

1

2

AccessPointCtrl

evAccessPointUnlocked to pUc_Uc1ControlEntry

evAccessPointLocked to pUc_Uc1ControlEntry

locked

unlocking

reqUnlockAccessPoint

tm(1000)

locking

tm(1000)

unlocked

reqLockAccessPoint

reqUnlockAccessPoint

tm(1000)
tm(1000)

reqLockAccessPoint

IBD_Uc1_ControlEntry

itsUc_Uc1ControlEntry1

pAdmin pAccessPoint

pCamerapUser

itsCamera1

pUc_Uc1ControlEntry

itsUser1

pUc_Uc1ControlEntry

itsAdmin1

pUc_Uc1ControlEntry

itsAccessPoint1

pUc_Uc1ControlEntry

2

Harmony for SE Deskbook | 60 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: System Functional Analysis

4.4.1.6 Use Case Model Verification

The Uc1ControlEntry model is verified through model execution on the
basis of the captured use case scenarios. The correctness and
completeness analysis is based on the visual inspection of the model
behavior.

The Rhapsody tool provides two ways to visualize model behavior:

• Visualization of the state-based behavior through animation of
respective statecharts

• Visualization of message sequences by means of automatically
generated sequence diagrams

Animated Statechart Diagram (Uc1ControlEntryCtrl)

Animated Sequence Diagram BB_Uc1Sc1 Nominal

Uc1ControlEntryCtrl

WaitForEntryRequest

UnlockingAndLockingAccessPoint

reqTakeSnapshot to pCamera

reqReadSecurityCard/
readSecurityCard();

reqProcessAlert("User Access Disabled") to pAdmin

ProcessingSecurityCardData

CardValid Fail3Times

/disableUserAccount();

logAccountData();

alarm();

ProcessingBiometricData

Failed3Times

/disableUserAccount();
logAccountData();

alarm();

BsTimeoutAuthenticated

/logEntryData();

A

evAccessPointLocked

A

A

WaitForResetAlarm

reqResetAlarm/

resetAlarm();

reqReadSecurityCard/
readSecurityCard();

/disableUserAccount();

logAccountData();

alarm();

/disableUserAccount();
logAccountData();

alarm();

/logEntryData();

evAccessPointLocked

reqResetAlarm/

resetAlarm();

:User :Uc_Uc1ControlEntry

reqReadSecurityCard()

readSecurityCard()

validateSecurityCard(CardStatus = Valid)

displayCardStatus(CardStatus = Valid)

reqScanBiometricData()

scanBiometricData()

authenticateBiometricData(AuthenticationStatus = Authenticated)

displayAuthenticationStatus(AuthenticationStatus = Authenticated)

logEntryData()

tm(5000)

reqReadSecurityCard()

readSecurityCard()

validateSecurityCard(CardStatus = Valid)

displayCardStatus(CardStatus = Valid)

reqScanBiometricData()

scanBiometricData()

authenticateBiometricData(AuthenticationStatus = Authenticated)

displayAuthenticationStatus(AuthenticationStatus = Authenticated)

logEntryData()

tm(5000)

reqUnlockAccessPoint()

:AccessPoint

tm(1000)

evAccessPointUnlocked()

reqLockAccessPoint()

tm(1000)

evAccessPointLocked()

reqUnlockAccessPoint()

tm(1000)

evAccessPointUnlocked()

reqLockAccessPoint()

tm(1000)

evAccessPointLocked()

reqTakeSnapshot()

:Camera

reqTakeSnapshot()

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 61

Case Study: System Functional Analysis

The analysis via Sequence Diagrams is supported by the Rhapsody
Sequence Diagram Compare feature. This feature enables to
perform comparisons between two Sequence Diagrams, e.g. one
capturing the sequence of a required scenario and the other showing
the recorded scenario. The differences between the diagrams are
shown color-coded. This feature may also be used to compare two
runs for regression testing.

Sequence Diagram Compare: Scenario BB_Uc1Sc1 Nominal

NOTE: Timeout Arrows were intentionally deselected via Preference Settings for Animated Sequence Diagrams

Arrow
Color

Name
Color

Description

Green Blue Msg matches in both SD

Pink Pink Msg is missing in the other SD

Green Pink Msg has different arguments in the other SD

Orange Orange Msg arrives at a different time in the other SD

Gray Gray Msg was excluded from comparison

Required
Sequence

Recorded
Sequence

Harmony for SE Deskbook | 62 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: System Functional Analysis

4.4.1.7 Linking Model Properties to Requirements

In order to assure that all Uc1 allocated system functional and
performance requirements are considered, traceability links from the
Uc1 block properties to the system requirements are established using
a satisfy dependency. There are two ways to implement the
<<satisfy>> dependency

- directly in the browser using the SE-Toolkit feature
Create Dependency, or

- graphically, in a Requirement Diagram.

It is recommended to start with the SE-Toolkit feature Create
Dependency. If considered necessary – e.g. for discussions or
documentation purposes - the dependencies may then be visualized in
a Requirements Diagram.

In the Tools Menu select
Tools > SE-Toolkit > Modeling Toolbox
In the dialog box select Dependencies.
Select Profile: SysML
Select Stereotype: satisfy.

In the system block Uc_Uc1ControlEntry
select the property(s) you want to link to a
system requirement.

In the Modeling Toolbox dialog box
click Set Source.

In the SystemRequirementsPkg
select the relevant system requirement(s).

In the ModelingToolbox dialog box
click Set Destination.

In the Modeling Toolbox dialog box
click Create Dependency with Stereotype

2

4

3

1

5

6

6

3

1

5

2

4

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 63

Case Study: System Functional Analysis

Visualization of the Dependencies in a Requirements Diagram

In the RequirementsPkg create a Requirements Diagram
RD_Uc1BlockLinksToSysReqs.

Move the operations and attributes from the
Uc_Uc1ControlEntry block into the diagram.

Move the associated system requirements from the
SystemRequirementsPkg into the diagram.

In the Tools Menu select Layout > Complete Relations > All

2

1 3

4

 Uc1ControlEntry Model Properties Mapped to System Requirements (Excerpt)

flagSecurityCardFailure
«Primitive Operation»

validateSecurityCard
«Primitive Operation»

t_Bs
«Attribute»

t_Unlocked
«Attribute»

ScFailCount
«Attribute»

flagBiometricScanFailure
«Primitive Operation»

logAccountData():void
«Primitive Operation»

logEntryData
«Primitive Operation»

BsFailCount
«Attribute»

«satisfy»
Three Attempts On Biometric Data Entry

«Requirement»

ID = SYS2 «satisfy» «satisfy» «satisfy»

Denied Entry Notification
«Requirement»

ID = SYS4 «satisfy» «satisfy» «satisfy» «satisfy»

Three Attempts On Employee ID Entry
«Requirement»

ID = SYS1

«satisfy»
Authorization of Security Card - Entry

«Requirement»

ID = SYS6
«satisfy»

Security Card Information
«Requirement»

ID = SYS11 «satisfy» «satisfy»

«satisfy» Out of Date Cards - Entry
«Requirement»

ID = SYS5
«satisfy»

Entry Time
«Requirement»

ID = SYS26 «satisfy» «satisfy»

«satisfy»
Time Between Two Independant Checks

«Requirement»

ID = SYS27 «satisfy»

«satisfy» «satisfy» «satisfy» «satisfy»

RD_Uc1BlockLinksToSysR
eqs

Harmony for SE Deskbook | 64 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: System Functional Analysis

4.4.2 Uc2ControlExit

4.4.2.1 Definition of Model Context

The elaboration of of the use case Uc2ControlExit will be performed in
a separate Rhapsody project Uc2ControlExit. The modeling starts
with the import of the relevant information from the Rhapsody project
SecSys_RA into the new project (ref. Section 4.4.1.1).

Add to Model as Unit the packages

- UseCaseDiagramsPkg.sbs,
- RequirementsPkg.sbs

In the imported use case diagram UCD_SecuritySystem you
may Delete from Model the the use case Uc1ControlEntry and
the actor Camera.

Right-click use case Uc2Control Exit and select
SE-Toolkit / Create System Model From Use Case.

4.4.2.2 Definition of Functional Flow

Similar to the steps outlined in Section 4.4.1.2 the functional flow of
the use case is elaborated in the Activity Diagram
Uc2ControlExitBlackBoxView that was created by the toolkit feature
Create System Model From Use Case.

Uc2ControlExit Functional Flow (Black-Box View)

Uc2ControlExitBlackBoxView

2

1

UserUser

AdminAdmin AccessPointAccessPoint

Security System

Uc2Control Exit

UCD_SecuritySystem

3

3

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 65

Case Study: System Functional Analysis

4.4.2.3 Derivation of Black-Box Use Case Scenarios

The combined nominal and exception sequences are created from the
black-box activity diagram by means of the SE-Toolkit feature Create
New Scenario From Activity Diagram (ref. Section4.4.1.3). The
toolkit automatically stores the derived Sequence Diagram in the
Uc2ControlExitBBScenariosPkg.

NOTE: The Interaction Ocurences / Operand Separators as well as
the Condition Mark were added manually after the generation of the

Sequence Diagram

Derived Use Case Scenario BB_Uc2Sc1 Nominal and Exception

BB_Uc2Sc1 Nominal and Exception

Harmony for SE Deskbook | 66 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: System Functional Analysis

4.4.2.4 Definition of Ports and Interfaces

Right-click the package
Uc2_ControlExit_BBScenarios and select
SE-Toolkit > Create Ports And Interfaces.

Connect ports either manually or right-click in the IBD
and select SE-Toolkit > Connect Ports

IBD of Use Case Model Uc2ControlExit with

generated Ports and Interfaces

4.4.2.5 Definition of Use Case Behavior

The behavior of the actors User and AccessPoint are generated by
means of the SE-Tookit feature Create Test Bench (ref. Section
4.4.1.5.). The behavior of the actor Accesspoint is manually captured
in a Statechart Diagram.

Note the reuse of behavior patterns in the Statechart Diagram of the
use case block. The system states ProcessingSecurityCard Data and
UnlockingAndLockingAccessPoint are identical to the ones used in the
use case block Uc_Uc1ControlEntry.

State-based Behavior of Actor AccessPoint

State-based Behavior of Use Case Block Uc_Uc2ControlExit

itsUc_Uc2ControlExit1

pAccessPoint

pUser

pAdmin

itsAccessPoint1

pUc_Uc2ControlExit

itsAdmin1

pUc_Uc2ControlExit

itsUser1

pUc_Uc2ControlExit

IBD_Uc2ControlExit

AccessPointCtrl

evAccessPointUnlocked to pUc_Uc2ControlExit

evAccessPointLocked to pUc_Uc2ControlExit

locked

unlocking

reqUnlockAccessPoint

tm(1000)

locking

tm(100)

unlocked

reqLockAccessPoint

reqUnlockAccessPoint

tm(1000)
tm(100)

reqLockAccessPoint

2

1

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 67

Case Study: System Functional Analysis

4.4.2.6 Use Case Model Verification

The Uc2ControlExit model is verified through model execution on the
basis of the captured use case scenarios. The correctness and
completeness analysis is based on the visual inspection of the model
behavior.

Verification of the Use Case Model Uc2ControlExit
through Model Execution

4.4.2.7 Linking Model Properties to Requirements

In order to assure that all Uc2 allocated functional and performance
requirements are considered, traceability links from the Uc2 block
properties to the system requirements are established using a satisfy
dependency (ref. Section 4.4.1.7).

Animated Sequence Diagram BB_Uc2Sc2 Nominal

Harmony for SE Deskbook | 68 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Design Synthesis

4.5 Design Synthesis

4.5.1 Architectural Analysis (Trade-Off Analysis)

The focus of the Architectural Analysis is on the determination of a
system decomposition that fulfills best the required functionality
identified in the system functional analysis phase. Fig. 4-4 details the
architectural analysis workflow and lists its support through the
Rhapsody SE-Toolkit in the respective phases.

As outlined in Section 4.1 Architectural Analysis is performed in a
separate project SecSys_AA. The elaborated system architecture
captured in the Block Definition Diagram BDD_SecuritySystem and
IBD_SecuritySystem in the ArchitecturalDesignPkg, will be common in
all subsequent realized use case models even when only a subset of
the system blocks will be addressed in the individual use case
realization.

Fig. 4-4 Workflow in the Architectural Analysis Phase and
its Support through the Rhapsody SE-Toolkit

SE-Toolkit Feature:
Copy MOEs to Children

SE-Toolkit Feature:
Perform Trade Analysis

[Next Key System Function]
[else]

Build Weighted Objectives Table

Define
Solution Candidates

Define
Key System Functions

Assign
Weights to Criteria

Determine Solution

Merge Solutions to
Form System Architecture

Define Utility Curve
for each Criterion

Define
Assessment Criteria

Assign MoEs
to Solution Candidate

ArchitecturalDesignPkg

[Next Key System Function]
[else]

Build Weighted Objectives Table

Define
Solution Candidates

Define
Key System Functions

Assign
Weights to Criteria

Determine Solution

Merge Solutions to
Form System Architecture

Define Utility Curve
for each Criterion

Define
Assessment Criteria

Assign MoEs
to Solution Candidate

ArchitecturalDesignPkg

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 69

Case Study: Design Synthesis

4.5.1.1 Definition of Key System Functions

The objective of this stage is to group the system functions together in
such a way that each group can be realized by a physical component.

Step1: Group related system functions into key system functions

The following 3 key system functions were identified through analysis
of the use case black-box activity diagrams:

ReadCardInfomation:
• readSecurityCard
• displayCardStatus
• alarm
• resetAlarm

CaptureBiometricData:
• scanBiometricData
• authenticateBiometricData
• displayAuthenticationStatus

ControlSecSys:
• validateSecurityCard
• flagSecurityCardFailure
• flagBiometricCheckFailure
• disableUserAccount
• logAccountData
• logEntryData
• logExitData
• checkForTimelimitViolations
• unlockAccesPoint
• lockAccessPoint

Step2: Define and apply first cut design criteria

Typically, the first cut design criterion is to decide which of the key
functions would be realized as a COTS component or developed
internally. In this case study it was decided that the functions
ReadCardInformation and CaptureBiometricData would be bought and
the function ControlSecSys developed internally.
Due to the number of ways in which the key function
CaptureBiometricData can be realized, it was decided to carry out a
Trade Study. It was not considered necessary for the key function
ReadCardInformation.

readSecurityCard

User

validateSecurityCard

[CardStatus=="Valid"][CardStatus=="Valid"]

[else]

scanBiometricData

User
[else]

authenticateBiometricData

[else]

flagBiometricScanFailure

[else]

[else][else]

[else]

flagSecurityCardFailure

[else]

[else][else]

[AuthenticationStatus==
"Authenticated"]

logEntryData

[AuthenticationStatus==
"Authenticated"]

disableUserAccount

[BsFailCount==3]

[ScFailCount==3]

[BsFailCount==3]

[ScFailCount==3]

displayCardStatus

displayAuthenticationStatus

logAccountData

alarm

reqUnlockAccessPoint

«MessageAction»

AccessPoint

evAccessPointLocked

«MessageAction»

AccessPoint
resetAlarm

Admin

[else][else]

reqTakeSnapshot

«MessageAction»

Camera

[First Request][First Request]

evAccessPointUnlocked

«MessageAction»

AccessPoint

reqLockAccessPoint

«MessageAction»

AccessPoint

reqProcessAlert

«MessageAction»

Admin

t_Bst_Bs

t_Unlockedt_Unlocked

Uc1ControlEntryBlackBoxView

checkForTimeLimitViolations

logExitData

validateSecurityCard

alarm

[CardStatus==Valid][CardStatus==Valid]

displayCardStatus

[ScFailCount<3]

readSecurityCard

User

[ScFailCount<3]

flagSecurityCardFailure

[else][else]

resetAlarm

Admin

reqUnlockAccessPoint

«MessageAction»

AccessPoint

reqLockAccessPoint

«MessageAction»

AccessPoint

evAccessPointLocked

«MessageAction»

AccessPoint

evAccessPointUnlocked

«MessageAction»

AccessPoint

t_Unlockedt_Unlocked

setTimeLimitViolation

«MessageAction»

Admin [TimeLimitStatus==true][TimeLimitStatus==true]

reqProcessAlert

«MessageAction»

Admin

[else][else]

Uc2ControlExitBlackBoxView

Harmony for SE Deskbook | 70 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Design Synthesis

4.5.1.2 Definition of Candidate Solutions

The objective of this phase is to identify possible solutions for a
chosen key system function.

Step1: Identify solutions to the chosen key system function

In this case study the chosen key function is CaptureBiometricData.
Possible solutions are:

• Facial Recognition
• Fingerprint Scanner
• Optical Scanner (examining iris or retina)

Step2: Select candidate solutions for further analysis

Facial recognition systems are at present not very reliable technology,
also they are very expensive to install and maintain.
Two practical candidate solutions remain that will be carried forward
for further analysis i.e.

• Fingerprint Scanner
• Optical Scanner (Cornea or Iris Scanner)

This information can now be entered into the model.

In the DesignSynthesisPkg create a package
ArchitecturalAnalysisPkg

In the ArchitecturalAnalysisPkg create a package
TradeStudyAnalysisPkg

In the TradeStudyAnalysisPkg create a package
BiometricScanTradeStudy

In the BiometricScanTradeStudy package create a Block
Definition Diagram called BDD_CaptureBiometricDataOptions

In the BiometricScanTradeStudy create the following blocks
- Capture Biometric Data
- Optical Scanner
- FingerprintScanner

Move the blocks onto BDD_CaptureBiometricDataOptions and
join them together using inheritance associations.

In the block CaptureBiometricData manually add the
Uc1ControlEntry operations that are associated with the key
system function CaptureBiometricData. This shows what the
OpticalScanner and FingerprintScanner should be capable of.

3

5

4

2

6

7

2

3

4

7

5

BDD_CaptureBiometricDataOption

1

6

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 71

Case Study: Design Synthesis

4.5.1.3 Definition of Assessment Criteria

Assessment criteria typically are based upon customer constraints,
required performance characteristics, and/or cost.

Assessment criteria are normally subjective but can also be very
specific. A subjective target could be low cost. A specific target could
be a precise measure of accuracy i.e. +/- 0.1 mm. In this case study
the assessment criteria are a mixture of both.

The assessment criteria and the associated classification in this case
study are:

• Accuracy
• Purchase
• Installation and
• Maintenance Cost

The assessment criteria are captured in the model by adding to the
block CaptureBiometricData for each assessment criterion a
respective attribute, stereotyped <<moe>>.

BDD_CaptureBiometricDataOption

Harmony for SE Deskbook | 72 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Design Synthesis

4.5.1.4 Assigning Weights to Assessment Criteria

Not all assessment criteria are equal. Some are more important than
others. Assessment criteria are weighted according to their relative
importance to the overall solution. The weighting factors are
normalized to add up to 1.0.

Step 1: Rank the assessment criteria

The ranking for the assessment criteria in this case study is

1 Accuracy
2 Security
3 Purchase Cost
4 Installation Cost
5 Maintenance

Step 2: Assign weightings to assessment criteria

In the case study the weightings of the chosen assessment criteria are

• Accuracy: 0.30
• Security : 0.25
• Purchase Cost: 0.20
• Installation Cost: 0.15
• Maintenance Cost: 0.10

These values are represented in the model by a tag called weight
attached to each of the <<moe>> attributes.

In each <<moe>> attribute select the tab Tags and
add the appropriate value.

The CaptureBiometricData block attributes are copied into the
solutions blocks by means of the SE-Toolkit feature
Copy MOEs to Children.

Right-click the CaptureBiometricData block and
select SE-Toolkit > Copy MOEs to Children.

2

1

1

BDD_CaptureBiometricDataOption

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 73

Case Study: Design Synthesis

4.5.1.5 Definition of a Utility Curve for each Criterion

The utility curve is a function that compares the outcome of an
objective analysis to a target and outputs a normalized value typically
between 0 and 10 to indicate how well the target is met.

To determine the MoE for accuracy create a linear utility curve that
examined the relationship between errors/thousand readings
(0-10 errors per thousand) and a scale of 0-10.

Accuracy Utility Curve

NOTE: For a simple linear function the utility curve can be calculated
from the following formula

MoE=-(MoE range/target range)+MOE range

This simple chart yields the formula

Accuracy MoE=-Errors Per Thousand + 10

With regards to the purchase cost it is assumed that ideally the target
figure that the company would wish to pay for the hardware is $0 and
the maximum is $400 dollars a unit. This gives a utility curve - based
upon the linear graph formula described earlier - of

Purchase cost MoE=-0.025*Purchase Cost + 10 .

Purchase Cost Utility Curve

For the installation cost of the hardware, a maximum budget of
$1500 was estimated for 10 units. This gives a utility curve described
by the function

Installation Cost MoE=-0.0067*installation cost +10

Installation Cost Utility Curve

y = - x + 10

10

Errors per thousand

MoE

0

2

4

6

8

10

0

1

2

3

4

5

6

7

8

9

 y = - 0.025x + 10

50

 100

 150

 200

 250

 300

 350

 400

 450

Purchase Cost ($)

MoE

0

2

4

6

8

10

0

y = - 0.0067x + 10

0

2

4

6

8

10

0
 200

 400
 600

 800
 1000

 1200
 1400

 1600

Total Installations cost $

MoE

Harmony for SE Deskbook | 74 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Design Synthesis

4.5.1.6 Assigning Measures of Effectiveness (MoE)
to each Solution

Accuracy: Fingerprint scanners are approximately in the order of 2-3
failures per 1000. For an error per thousands value of 2.5 this yields
an MoE of 7.5 for the fingerprint scanner. Optical scanning systems
have failure rates of 0.001 per 1000. this yields an MoE of 9.999 or
effectively 10 for the optical scanner.
Purchase Cost: For the hardware to capture biometric data it has
been estimated at $110 dollars for the finger print scanner and $ 250
for the optical scanner. From the purchase cost utility function, a
purchase cost MoE of 7.25 is calculated for the fingerprint scanner and
a purchase cost MoE of 3.75 for the optical scanner.
Installation Cost: For 10 units it was estimated to be $ 600 for the
fingerprint scanner and $ 1175 for the optical scanner. From the
installation cost utility function, an installation cost MoE of 6.0 is
calculated for the fingerprint scanner and an installation cost MoE of
2.12 for the optical scanner.
Security: It has been found that optical scanners (iris or retina) are
impossible to fool, whereas fingerprint scanners have been fooled with
relatively simple methods. With this mind it was decided to give
fingerprint scanners a security MoE of 8.0 and optical scanners a
security MoE of 10.0.
Maintenance: Both systems under consideration need little
maintenance. However, optical scanners need slightly more
maintenance than fingerprint scanners due to their sensitivity to light
and the degree of cleanliness required. With this mind it was decided
to give fingerprint scanners am maintenance MoE of 8.0 and optical
scanners and maintenance MoE of 6.0.

In the browser select a block representing one of the solutions
and opend its features.

Select the attribute tab.

Select the attribute to be edited and in the Initial Value field
enter the expected value.

Select and edit each attribute in turn.

Repeat steps 1-4 for each bock representing a solution.

2

4

3

1

BDD_CaptureBiometricDataOption

1
3 2

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 75

Case Study: Design Synthesis

4.5.1.7 Determination of Solution

Once each of the key functions has a number of possible solutions
with MoEs assigned to them, it is possible to combine the various
solutions in order to determine the optimum solution for the
architecture.

The means of building the possible architectures is through the
Solution Architecture Diagram. It shows the component options
required to build the final variant architectures for the complete
architecture or key function. The two possible variant architectures in
this case, consist of either the FingerprintScanner or the
OpticalScanner. There are no additional components required.

Step 1: Build Solution Architecture Diagram

This diagram is created in the TradeStudyAnalysisPackage. It shows
the composition of the final product as made up from possible
solutions. Using this diagram it is possible to mix several different
solutions to key functions to realize complete system architecture. In
this instance there is only one component to be analyzed for each
architecture.

In the BiometricScanTradeStudy package create a
Block Definition Diagram BDD_SolutionArchitecture.

Create a block FingerprintScannerArchitecture.

Drag on the FingerprintScanner block and using the
decomposition relationship make it part of the
FingerprintScannerArchitecture.

Create a block OpticalScannerArchitecture.

Drag on the OpticalScanner block and using the decomposition
relationship make it part of the OpticalScannerArchitecture.

2

4

3

1

5

FingerprintScanner
«block»

FingerprintScannerArchitecture
«block»

11

Optical Scanner
«block»

1

OpticalScannerArchitecture
«block»

1

BDD_SolutionArchitecture

3 5

2

4

1

Harmony for SE Deskbook | 76 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Design Synthesis

Step 2: Perform Weighted Objectives calculation

Once the possible solution architectures are in place, the analysis to
determine the best solution from the presented options can be carried
out. The means of doing this analysis is the Weighted Objectives
Calculation. It is used to determine the solution for a particular
function. It consists of multiplying the value for each MoE by its
respective importance weighting, and then adding the resultant values
together. This is carried out for each solution for each function. The
sum of the combined solutions with the highest score is selected as
the implementation for that particular architecture or function. The
actual calculation is carried out and displayed within an Excel
spreadsheet.

To support this calculation within Rhapsody and Excel, one further
diagram is required: the Option Analysis Diagram. The option analysis
diagram shows all the variant architecture solutions for the key
function under consideration.

In the BiometricScanTradeStudy package create a
Block Definition Diagram BDD_OptionAnalysis.

Drag on the blocks OpticalScannerArchitecture and the
FingerprintScannerArchitecture.

In the browser right-click BDD_OptionAnalysis and
select SE-Toolkit > Perform Trade Analysis.

Excel will then open up with the results of the analysis. From this
analysis it can be seen that the Fingerprint Scanner scores slightly
higher (despite the higher scores for the optical scanner in the areas of
accuracy and security) and so will be selected as the implementation
of the function ScanBiometricData.

2

3

1

1

BDD_OptionAnalysis

FingerprintScannerArchitecture
«block»

OpticalScannerArchitecture
«block»

2

Rhapsody Generated Weighted Objectives Table (Excel)

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 77

Case Study: Design Synthesis

4.5.1.8 Documentation of the Solution in the ArchitecturalDesignPkg

In the DesignSynthesisPkg create a package
ArchitecturalDesignPkg.

The elaborated system architecture is captured in the block definition
diagram BDD_SecuritySystem and the internal block diagram
IBD_SecuritySystem. Both diagrams are created in the
ArchitecturalDesignPkg.

Block Definition Diagram BDD_Security System

Internal Block Diagram IBD_Security System

By defining a composition relationship between the system block
SecuritySystem and the subsystem blocks in the block definition
diagram, automatically instances of the subsystem blocks are created
in the SecuritySystem block

It is recommended to standardize the structure of the
ArchitecturalDesignPkg. If a system block is decomposed into parts,
each part should be allocated to a corresponding package within a
package named <SystemBlockName>DecompositionPkg. The
creation of this structure is automated by means of the SE-Toolkit
feature Create Sub Packages:

Right-click the SecuritySystem block,
select SE-Toolkit > Create Sub Packages

SecuritySystem
«Block»

1

CardReaderEntry

1

CardReaderEntry

1

FingerprintScannerFingerprintScanner

1

1
SecSysController

«Block»1

CardReaderExit

1

CardReaderExit

1

BDD_SecuritySystem

itsSecuritySystem1

itsFingerprintScanner1

itsCardReaderEntry1

itsCardReaderExit1 itsSecSysController1

IBD_SecuritySystem

1

1

Harmony for SE Deskbook | 78 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Design Synthesis

4.5.2 Architectural Design

Fig. 4-5 shows the architecturall design workflow in the case study.
The architectural design is performed for each use case of an iteration
by transitioning from the black-box view to the white-box view – also
referred to as Use Case Realization (ref. Fig. 4-6).

Once all use cases of an iteration are realized, they are merged in the
Integrated System Architecture Model.

Fig. 4-5 Architectural Design Workflow and
Associated Rhapsody Projects

Fig. 4-6 Use Case Realization Workflow and its Support
through the Rhapsody SE-Toolkit

SE-Toolkit Features:
• Create New Scenario
 from Activity Diagram

• Perform Swimlane
 Consistency Check

SE-Toolkit Feature:
Create Ports And Interfaces

SE-Toolkit Feature:
Create Dependency

Allocate Non-Functional Reqs
and define Traceability Links

Verify
Realized Use Case Model

Derive
White-Box Sequence Diagrams

Define White-Box
Ports and Interfaces

Define
State-Based Behavior of Blocks

Baselined
Realized Use Case Model

SE-Toolkit Feature:
• Duplicate Activity View
• Allocate Operations
 from Swimlanes

• Create Allocation Table
• Architectural Design Wizard

Allocate
System Properties to Parts

SE-Toolkit Feature:
Merge Functional Analysis

Update Use Case
 ArchitecturalDesignPkg

SystemArchitecture
Structure

Allocate
System Properties to Parts

Realize Uc1ControlEntry

Merge Realized Use Cases

Realize Uc2ControlExit

Integrated Sytem
Architecture Model

Rhapsody Project
Uc1ControlEntry

Rhapsody Project
Uc2ControlExit

Rhapsody Project
SecSys_IA

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 79

Case Study: Design Synthesis

4.5.2.1 Use Case Realization Uc1ControlEntry

4.5.2.1.1 Update of the ArchitecturalDesignPkg

The update of the ArchitecturalDesignPkg in the Uc1ControlEntry
model project structure will be performed in three steps.

Step 1: Import the ArchitecturalDesignPkg from SecSys_AA project

In the Rhapsody main menue select File > Add to Model,
navigate to the SecSys_AA project and
double-klick SecSys_AA.rpy

In the dialog box tick As unit and select
ArchitecturalDesignPkg.sbs

Step 2: Update the imported BDD and IBD

As in the SecSys model only the system architecture was captured in
the BDD_SecuritySystem and IBD_SecuritySystem, the imported
diagrams need to be updated w.r.t the use case associated actors.

Step 3: Copy/paste the events, operations and attributes from the use
case block Uc_Uc1ControlEntry in the FunctionalAnalysisPkg into
the system block SecuritySystem in the ArchitecturalDesignPkg.

Right-click the block SecuritySystem and select
SE-Toolkit > Merge Functional Analysis

The copies are traced back to the origins.

Updated BDD_SecuritySystem

Updated IBD_SecuritySystem

SecuritySystem
«Block»

CardReaderEntry

1

CardReaderEntry

1 1

FingerprintScanner

1

FingerprintScanner

SecSysController
«Block»111

CardReaderExit

1

CardReaderExit

User

1

User

1

Admin

1 1

Admin

1 11 1

Camera

11

Camera

AccessPoint

11 11

AccessPoint

11

BDD_SecuritySystem

itsSecuritySystem1

itsFingerprintScanner1

itsCardReaderEntry1

itsCardReaderExit1 itsSecSysController1itsUser1

itsAdmin1

itsCamera1

itsAccessPoint1

IBD_SecuritySystem

2

1

4

3

4

Harmony for SE Deskbook | 80 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Design Synthesis

4.5.2.1.2 Allocation of System Block Properies to Parts

4.5.2.1.2.1 Allocation of Operations to Parts

The allocation of operations to the parts of the system block is
elaborated graphically (White-Box Activity Diagram). The Black-box
use case activity diagram is partitioned into swim lanes, each of which
corresponds to a part of the decomposed system block (case study:
CardReader_Entry, FingerprintScanner, and SecSysController).
Based on design considerations, operations (≡ actions) then are
“moved” to respective swim lanes. An essential requirement is that
the initial links between the operations are maintained.

In the SecuritySystemDecompositionPkg create a package
SecuritySystemWB_AD_Uc1.

In the FunctionalAnalysisPkg > Uc1ControlExitPkg right-click
Uc1ControlEntryBlackBoxView and select
Duplicate Activity View.

Rename the copied Activity View to
Uc1ControlEntryWhiteBoxView and
move it into the SecuritySystemWB_AD_Uc1 package.

In the category Uc1ControlEntryWhiteBoxView partition the
Activity Diagram (Activity) into swimlanes:

- CardReader_Entry,
- FingerprintScanner and
- SecSysController.

Allocate blocks via drag and drop on swimlane headlines

Allocate actions to the respective swim lanes.

Creating a White-Box Activity Diagram:

On top of the copied black-box activity diagram create an empty
activity diagram with swimlanes. Move the operations “bottom-
up" into the subsystem swimlanes.

2

1

3

4

3

1

2

5

6

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 81

Case Study: Design Synthesis

White-Box Activity Diagram Uc1ControlEntry

Uc1ControlEntryWhiteBoxView

«Block» FingerprintScanner

scanBiometricData

User

[else]

authenticateBiometricData

displayAuthenticationStatus

enableBiometricScan

disableBiometricScan

t_BS

disableBiometricScan

disableBiometricScan

«Block» SecSysController

validateSecurityCard

[else]

[CardStatus =="Valid"]

flagBiometricScanFailure

[else]

flagSecurityCardFailure

logEntryData

disableUserAccount

[ScFailCount==3]

logAccountData

reqUnlockAccessPoint

«MessageAction»

AccessPoint

evAccessPointLocked

«MessageAction»

AccessPoint

[else]
reqTakeSnapshot

«MessageAction»

Camera

[First Request]

evAccessPointUnlocke

d

«MessageAction»

AccessPoint

reqLockAccessPoint

«MessageAction»

AccessPoint

reqProcessAlert

«MessageAction»

Admin

reqResetAlarm

«MessageAction»

Admin

setAutheticationStatus

«MessageAction»

[BsFailCount==3]

[AuthenticationStatus
=="Authenticated"]

A

[else]

A

t_Unlocked

reqValidateSecurityCar

d

«MessageAction»

«Block» CardReaderEntry

readSecurityCard

User

displayCardStatus

alarm

resetAlarm

B

[else]

B

«Block» FingerprintScanner

scanBiometricData

User

[else]

authenticateBiometricData

displayAuthenticationStatus

enableBiometricScan

disableBiometricScan

t_BS

disableBiometricScan

disableBiometricScan

«Block» SecSysController

validateSecurityCard

[else]

[CardStatus =="Valid"]

flagBiometricScanFailure

[else]

flagSecurityCardFailure

logEntryData

disableUserAccount

[ScFailCount==3]

logAccountData

reqUnlockAccessPoint

«MessageAction»

AccessPoint

evAccessPointLocked

«MessageAction»

AccessPoint

[else]
reqTakeSnapshot

«MessageAction»

Camera

[First Request]

evAccessPointUnlocke

d

«MessageAction»

AccessPoint

reqLockAccessPoint

«MessageAction»

AccessPoint

reqProcessAlert

«MessageAction»

Admin

reqResetAlarm

«MessageAction»

Admin

setAutheticationStatus

«MessageAction»

[BsFailCount==3]

[AuthenticationStatus
=="Authenticated"]

A

[else]

A

t_Unlocked

reqValidateSecurityCar

d

«MessageAction»

«Block» CardReaderEntry

readSecurityCard

User

displayCardStatus

alarm

resetAlarm

B

[else]

B

«Block» FingerprintScanner

scanBiometricData

User

[else]

authenticateBiometricData

displayAuthenticationStatus

enableBiometricScan

disableBiometricScan

t_BS

disableBiometricScan

disableBiometricScan

«Block» SecSysController

validateSecurityCard

[else]

[CardStatus =="Valid"]

flagBiometricScanFailure

[else]

flagSecurityCardFailure

logEntryData

disableUserAccount

[ScFailCount==3]

logAccountData

reqUnlockAccessPoint

«MessageAction»

AccessPoint

evAccessPointLocked

«MessageAction»

AccessPoint

[else]
reqTakeSnapshot

«MessageAction»

Camera

[First Request]

evAccessPointUnlocke

d

«MessageAction»

AccessPoint

reqLockAccessPoint

«MessageAction»

AccessPoint

reqProcessAlert

«MessageAction»

Admin

reqResetAlarm

«MessageAction»

Admin

setAutheticationStatus

«MessageAction»

[BsFailCount==3]

[AuthenticationStatus
=="Authenticated"]

A

[else]

A

t_Unlocked

reqValidateSecurityCar

d

«MessageAction»

«Block» CardReaderEntry

readSecurityCard

User

displayCardStatus

alarm

resetAlarm

B

[else]

B

«Block» FingerprintScanner

scanBiometricData

User

[else]

authenticateBiometricData

displayAuthenticationStatus

enableBiometricScan

disableBiometricScan

t_BS

disableBiometricScan

disableBiometricScan

«Block» SecSysController

validateSecurityCard

[else]

[CardStatus =="Valid"]

flagBiometricScanFailure

[else]

flagSecurityCardFailure

logEntryData

disableUserAccount

[ScFailCount==3]

logAccountData

reqUnlockAccessPoint

«MessageAction»

AccessPoint

evAccessPointLocked

«MessageAction»

AccessPoint

[else]
reqTakeSnapshot

«MessageAction»

Camera

[First Request]

evAccessPointUnlocke

d

«MessageAction»

AccessPoint

reqLockAccessPoint

«MessageAction»

AccessPoint

reqProcessAlert

«MessageAction»

Admin

reqResetAlarm

«MessageAction»

Admin

setAutheticationStatus

«MessageAction»

[BsFailCount==3]

[AuthenticationStatus
=="Authenticated"]

A

[else]

A

t_Unlocked

reqValidateSecurityCar

d

«MessageAction»

«Block» CardReaderEntry

readSecurityCard

User

displayCardStatus

alarm

resetAlarm

B

[else]

B

[else]

[CardStatus =="Valid"]

[else]

[else]

[ScFailCount==3]

[else]

[First Request]

[BsFailCount==3]

[AuthenticationStatus
=="Authenticated"]

[else]

[else]

Harmony for SE Deskbook | 82 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Design Synthesis

NOTE: In order to provide the required functionality for the chosen
design, two actions that do not have an associated system requirement
had to be added to the white-box activity diagrams:

enableBiometricScan and
disableBiometricScan

A respective derived requirement needed to be formulated and stored in
the DerivedRequirementsPkg.

Summarizing the Allocation of Operations

The allocation of operations to the subsystems may be summarized in
an Excel spreadsheet by means of the SE-Toolkit feature Create
Allocation Table.

Right-click Activity in SecuritySystemWB_AD_Uc1 >
ActivityViews > Uc1ControlEntryWhiteBoxView.

Select SE-Toolkit > Create Allocation Table

Allocation Table of Uc1ControlEntryWhiteBoxView (Excel Spreadsheet)

FingerprintScanner SecSysController CardReader_Entry

scanBiometricData validateSecurityCard alarm

authenticateBiometricData flagBiometricScanFailure displayCardStatus

enableBiometricScan disableUserAccount readSecurityCard

disableBiometricScan flagSecurityCardFailure resetAlarm

displayAuthenticationStatus logEntryData

logAccountData

1

2

1

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 83

Case Study: Design Synthesis

Formalizing the Allocation of Operations

Once an allocation concept is elaborated, the allocation is formalized by
copying the system block operations and receptions – incl.
documentation and requirements dependencies - to respective
subsystem blocks. This process is supported by the SE-Toolkit feature
Allocate Operations from Swimlanes.

Right-click Activity in
SecuritySystemWB_AD_Uc1 > ActivityViews >
Uc1ControlEntryWhiteBoxView and select
SE-Toolkit > Allocate Operations from Swimlanes.

In the ArchitecturalDesignPkg
select system block SecuritySystem and
click Set Destination

In the Modeling Toolbox dialog box
click Allocate Operations from Swimlanes

The reason for the error messge below is, that - as mentioned in the
previous paragraph - the actions/operations enableBiometricScan and
disableBiometricScan were added afterwards to the white-box activity
diagram Uc1ControlEntry. Therefore they are not included in the set of merged
use case operations in the SecuritySystem block.

In order to add these operations to the SecuritySystem block and to
allocate them to the FingerprintScanner block:

In the dialog box Select All,

click Accept Selected.

3

2

1

4

5

2

3

Harmony for SE Deskbook | 84 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Design Synthesis

4.5.2.1.2.2 Allocation of Attributes and Events to Parts

The allocation of SecuritySystem block attributes and receptions
(events) to the subsystems is performed by means of the SE-Toolkit
feature Allocation Wizard.

NOTE: This SE-Toolkit feature may also be used for allocating
operations.

In the ArchitecturalDesignPkg right-click SecuritySystem block,
select SE-Toolkit > Allocation Wizard

In the dialog box select Attributes

In the Allocate To drop-down menue select SecSysController.

In the Allocate From window select attribute(s) and
click Allocate

NOTE: If an element needs to be allocated to more than one
subsystem, select Allocate but Leave in Pool

Repeat step 2 - 4 for the allocation of events.

Allocated Attributes, Operations and Events

1

3

4

2

4

3 4

2

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 85

Case Study: Design Synthesis

4.5.2.1.3 Derivation of White-Box Sequence Diagrams

White-box scenarios are derived from the white-box activity diagrams
by means of the SE-Toolkit feature Create New Scenario From
Activity Diagram.

In the SecuritySystemDecompositionPkg create a package
SecuritySystemWB_SD_Uc1 and follow the steps outlined in
Section 4.4.1.3.

Harmony for SE Deskbook | 86 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Design Synthesis

Derived White-Box Use Case Scenario WB_Uc1Sc1 Nominal

:User

reqReadSecurityCard()

:CardReader

Entry

readSecurityCard()

displayCardStatus(CardStatus)

reqReadSecurityCard()

readSecurityCard()

displayCardStatus(CardStatus)

:SecSysController

AuthenticationStatus==

"Authenticated"

CardStatus=="Valid"

logEntryData()

t_Unlocked

reqValidateSecurityCard()

reqDisplayCardStatus(CardStatus)

validateSecurityCard(CardStatus)

logEntryData()

t_Unlocked

reqValidateSecurityCard()

reqDisplayCardStatus(CardStatus)

validateSecurityCard(CardStatus)

:Fingerprint

Scanner

disableBiometricScan()

enableBiometricScan()

reqEnableBiometricScan()

reqDisableBiometricScan()

retAuthenticationStatus(AuthenticationStatus)

displayAuthenticationStatus(AuthenticationStatus)

authenticateBiometricData(AuthenticationStatus)

scanBiometricData()

reqScanBiometricData()

<= t_BS

disableBiometricScan()

enableBiometricScan()

reqEnableBiometricScan()

reqDisableBiometricScan()

retAuthenticationStatus(AuthenticationStatus)

displayAuthenticationStatus(AuthenticationStatus)

authenticateBiometricData(AuthenticationStatus)

scanBiometricData()

reqScanBiometricData()

<= t_BS

reqUnlockAccessPoint()

:AccessPoint

reqUnlockAccessPoint()

evAccessPointUnlocked()

reqLockAccessPoint()

evAccessPointLocked()

evAccessPointUnlocked()

reqLockAccessPoint()

evAccessPointLocked()

:Camera

reqTakeSnapshot()reqTakeSnapshot()

WB_Uc1Sc1 Nominal

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 87

Case Study: Design Synthesis

 Derived White-Box Use Case Scenario
 WB_Uc1Sc3 Exception BiometricScan
 Pre-Condition: 2-Times Failed Authorization

:User :CardReader
Entry

alarm()

resetAlarm()

alarm()

resetAlarm()

:SecSysController

AuthenticationStatus==

"Not Authenticated"

BsFailCount=3

flagBiometricScanFailure(BsFailCount)

disableUserAccount()

logAccountData()

reqAlarm()

reqResetAlarm()

flagBiometricScanFailure(BsFailCount)

disableUserAccount()

logAccountData()

reqAlarm()

reqResetAlarm()

:Fingerprint
Scanner

enableBiometricScan()

reqScanBiometricData()

scanBiometricData()

authenticateBiometricData(AuthenticationStatus)

displayAuthenticationStatus(AuthenticationStatus)

retAuthenticationStatus(AuthenticationStatus)

reqDisableBiometricScan()

disableBiometricScan()

enableBiometricScan()

reqScanBiometricData()

scanBiometricData()

authenticateBiometricData(AuthenticationStatus)

displayAuthenticationStatus(AuthenticationStatus)

retAuthenticationStatus(AuthenticationStatus)

reqDisableBiometricScan()

disableBiometricScan()

reqProcessAlert(AlertType)

:Admin

reqProcessAlert(AlertType)

reqResetAlarm()reqResetAlarm()

WB_Uc1Sc3 Exception BiometricScan

Derived White-Box Use Case Scenario
WB_Uc1Sc2 Exception CardReaderEntry
Pre-Condition: 2-Times Failed SecurityCard Check

WB_Uc1Sc2 Exception CardReaderEntry

:CardReader
Entry

displayCardStatus(CardStatus)

alarm()

resetAlarm()

displayCardStatus(CardStatus)

alarm()

resetAlarm()

:SecSysController

CardStatus=="Not Valid"

ScFailCount=3

validateSecurityCard(CardStatus)

reqDisplayCardStatus(CardStatus)

flagSecurityCardFailure(ScFailCount)

disableUserAccount()

logAccountData()

reqAlarm()

reqResetAlarm()

validateSecurityCard(CardStatus)

reqDisplayCardStatus(CardStatus)

flagSecurityCardFailure(ScFailCount)

disableUserAccount()

logAccountData()

reqAlarm()

reqResetAlarm()

reqProcessAlert(AlertType)

:Admin

reqResetAlarm()

reqProcessAlert(AlertType)

reqResetAlarm()

Harmony for SE Deskbook | 88 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Design Synthesis

4.5.2.1.4 Definition of Ports and Interfaces

Once all black-box use case scenarios are decomposed into white-box
scenarios, the resulting subsystem ports and interfaces are defined by
means of the SE-Toolkit feature Create Ports And Interfaces.

In the ArchitecturalDesignPkg right-click the package
SecuritySystemWB_UcSD and select
SE-Toolkit > Create Ports And Interfaces.

NOTE: The SE-Toolkit feature only defines the behavioral
ports and associated required/provides interfaces.

Manually add Delegation Ports and associated interfaces.

Connect ports either manually or right-click in the IBD
and select SE-Toolkit > Connect Ports.

2

3

1

 Internal Block Diagram of the Realized Use Case Uc1ControlEntry

IBD_SecuritySystem

itsSecuritySystem1

itsFingerprintScanner1

pUser pSecSysController

itsCardReaderEntry1

pSecSysControllerpUser

itsCardReaderExit1 itsSecSysController1

pAdmin

pAccessPoint

pFingerprintScanner

pCardReaderEntry pCamera

itsAdmin1

pSecSysController

itsCamera1

pSecSysController

itsAccessPoint1

pSecSysController

itsUser1

pFingerprintScanner

pCardReaderEntry

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 89

Case Study: Design Synthesis

Documentation of System Interfaces (ICD)

A commonly used artifact for the documentation of the communication
in a network is the N-squared (N

2
) chart. In an N

2
chart the basic

nodes of communication are located on the diagonal, resulting in an
NxN matrix for a set of N nodes. For a given node, all outputs
(UML/SysML required interfaces) are located in the row of that node
and inputs (UML/SysML provided interfaces) are in the column of that
node. The diagram below depicts the N

2
chart of the realized use case

Uc1ControlEntry.

The N

2
 chart is generated by means of the SE-Toolkit feature

Generate N2 Matrix:

In the ArchitecturalDesignPkg right-click the internal block diagram
IBD_SecuritySystem and select SE-Toolkit > Generate N2 Matrix.

N
2
Chart of the Realized Use Case Uc1ControlEntry

Harmony for SE Deskbook | 90 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Design Synthesis

4.5.2.1.5 Definition of Realized Use Case Behavior

State-based Behavior of the CardReaderEntry Block and FingerprintScanner Block

itsSecuritySystem1

itsFingerprintScanner1

pUser pSecSysController

itsCardReaderEntry1

pSecSysControllerpUser

itsCardReaderExit1 itsSecSysController1

pAdmin

pAccessPoint

pFingerprintScanner

pCardReaderEntry pCamera

CardReaderEntry_Ctrl

WaitForRequest

reqValidateEntryRequest to pSecSysController

reqReadSecurityCard/
readSecurityCard();

[params-> CardStatus == "Valid"]/
displayCardStatus("Valid");

[else]/
displayCardStatus("Not Valid");

reqDisplayCardStatus

AlarmOff

AlarmOn

reqAlarm/
 alarm();

reqResetAlarm/

resetAlarm();

reqReadSecurityCard/
readSecurityCard();

[params-> CardStatus == "Valid"]/
displayCardStatus("Valid");

[else]/
displayCardStatus("Not Valid");

reqDisplayCardStatus

reqAlarm/
 alarm();

reqResetAlarm/

resetAlarm();

FingerprintScanner_Ctrl

BiometricScanDisabled

retAuthenticationStatus("Authenticated") to pSecSysController

BiometricScanEnabled

waitForScanRequest

AuthenticateBiometricData

 authenticateBiometricData(AuthenticationStatus); displayAuthenticationStatus(AuthenticationStatus);

reqScanBiometricData/

 scanBiometricData();

[AuthenticationStatus=="Authenticated"]

retAuthenticationStatus("Not Authenticated") to pSecSysController

[AuthenticationStatus=="Not Authenticated"]

evBsTimeout to pSecSysController

tm(t_BS)/

disableBiometricScan();

A

reqDisableBiometricScan/

disableBiometricScan();

reqEnableBiometricScan/

enableBiometricScan();

A

reqScanBiometricData/

 scanBiometricData();

[AuthenticationStatus=="Authenticated"]

[AuthenticationStatus=="Not Authenticated"]

tm(t_BS)/

disableBiometricScan();

reqDisableBiometricScan/

disableBiometricScan();

reqEnableBiometricScan/

enableBiometricScan();

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 91

Case Study: Design Synthesis

State-based Behavior of the SecSysController Block

Note the reuse of behavior patterns in the statechart diagram of the
SecSysController block. The statecharts ProcessingSecurityCardData
and ProcessingBiometricData are extended copies of the ones used in
the black-box Uc1ControlEntry use case block. The statechart
UnlockingAndLockingAccessPoint is an unchanged copy.

ProcessingSecurityCardData

ValidatingSecurityCard

 validateSecurityCard(CardStatus);

reqDisplayCardStatus(CardStatus) to pCardReaderEntry

WaitForRequest

reqValidateEntryRequest

SecCardFailure

flagSecurityCardFailure(ScFailCount);

reqAlarm to pCardReaderEntry

[else]

[ScFailCount<3]

[else]

ScFail3Times

CardValid

[CardStatus=="Valid"]

/ScFailCount=0;/ScFailCount=0;

reqValidateEntryRequest

[else]

[ScFailCount<3]

[else]

[CardStatus=="Valid"]

1

SecSysControllerEntry_Ctrl

WaitForEntryRequest

reqTakeSnapshot to pCamera

reqValidateEntryRequest

ProcessingSecurityCardData

ScFail3TimesCardValid

ProcessingBiometricData

BsFail3TimesBsTimeoutAuthenticated

UnlockingAndLockingAccessPoint

/ logEntryData();

reqProcessAlert("User Access Disabled") to pAdmin

WaitForResetAlarm

reqResetAlarm to pCardReaderEntry

reqResetAlarm

A

A

reqAlarm to pCardReaderEntry

/disableUserAccount();
logAccountData();

/disableUserAccount();
logAccountData();

A

evAccessPointLocked

reqValidateEntryRequest

/ logEntryData();

reqResetAlarm

/disableUserAccount();
logAccountData();

/disableUserAccount();
logAccountData();

evAccessPointLocked

1

2 ProcessingBiometricData

reqEnableBiometricScan to pFingerprintScanner

WaitForBiometricScanInfo

BiometricScanFailure

 flagBiometricScanFailure(BsFailCount);

[BsFailCount<3]

retAuthenticationStatus

[else]

reqDisableBiometricScan to pFingerprintScanner

[params->AuthenticationStatus=="Authenticated"]

reqDisableBiometricScan to pFingerprintScanner

[BsFailCount=3]

BsFail3Times

BsTimeoutevBsTimeout

Authenticated

/BsFailCount=0;/BsFailCount=0;

[BsFailCount<3]

retAuthenticationStatus

[else]

[params->AuthenticationStatus=="Authenticated"]

[BsFailCount=3]

evBsTimeout

2

Harmony for SE Deskbook | 92 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Design Synthesis

Behavior of the Actor Blocks

Taking into consideration the communication via the additional actor
port in the User block and Adminstrator block, both behaviors need to
be extended by applying the SE-Toolkit feature Create Test Bench
(ref. Section 4.4.1.5). No change is needed for the actor Camera.

Example: Actor block User:

In the Internal Block Diagram IBD_SecuritySystem right-click the
block User and select SE-Toolkit > Create Test Bench.

Select No

Extended Behavior of the Actor Block User

Repeat the steps 1-2 for the actor block Admin.

The state-based behavior of the actor block AccessPoint needs to be
extended graphically.

AccessPointCtrl

locked

unlocking

reqUnlockAccessPoint

unlocked

locking

reqLockAccessPoint

evAccessPointUnlocked to pUc_Uc1ControlEntry

tm(1000)

evAccessPointLocked to pUc_Uc1ControlEntry

tm(1000)

evAccessPointUnlocked to pSecSysController

evAccessPointLocked to pSecSysController reqUnlockAccessPoint

reqLockAccessPoint

tm(1000)

tm(1000)

2

1

3

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 93

Case Study: Design Synthesis

4.5.2.1.6 Realized Use Case Verification

The realized use case model Uc1ControlEntry, is verified
through model execution on the basis of the captured
use case scenarios. The correctness and completeness
analysis is based on the visual inspection of the model
behavior (animated Statechart and Sequence
Diagrams).

4.5.2.1.7 Allocation of
Non-functional Requirements

So far the focus was on the allocation of system-level
operations and associated functional system
requirements to the parts of the chosen architectural
decomposition. Latest at this stage, derived functional
requirements should have been approved and linked to
respective operations. The final step in the use case
realization taskflow is the allocation of non-functional
requirements. In order to assure that all use case related
non-functional requirements are considered, traceability
links from the relevant subsystem block to the non-
functional system requirements need to be defined using
a <<satisfy>> dependency.

Animated Sequence Diagram WB_Uc1Sc1 Nominal)

:User :CardReader
Entry

reqReadSecurityCard()

readSecurityCard()

displayCardStatus(CardStatus = Valid)

reqReadSecurityCard()

readSecurityCard()

displayCardStatus(CardStatus = Valid)

:Fingerprint
Scanner

enableBiometricScan()

reqScanBiometricData()

scanBiometricData()

authenticateBiometricData(AuthenticationStatus = Authenticated)

displayAuthenticationStatus(AuthenticationStatus = Authenticated)

disableBiometricScan()

enableBiometricScan()

reqScanBiometricData()

scanBiometricData()

authenticateBiometricData(AuthenticationStatus = Authenticated)

displayAuthenticationStatus(AuthenticationStatus = Authenticated)

disableBiometricScan()

reqValidateSecurityCard()

:SecSysController

reqValidateSecurityCard()

validateSecurityCard(CardStatus = Valid)

reqDisplayCardStatus(CardStatus = Valid)

reqEnableBiometricScan()

retAuthenticationStatus(AuthenticationStatus = Authenticated)

reqDisableBiometricScan()

tm(5000)

validateSecurityCard(CardStatus = Valid)

reqDisplayCardStatus(CardStatus = Valid)

reqEnableBiometricScan()

retAuthenticationStatus(AuthenticationStatus = Authenticated)

reqDisableBiometricScan()

tm(5000)

reqUnlockAccessPoint()

:AccessPoint

reqUnlockAccessPoint()

tm(1000)

evAccessPointUnlocked()

reqLockAccessPoint()

tm(1000)

evAccessPointLocked()

tm(1000)

evAccessPointUnlocked()

reqLockAccessPoint()

tm(1000)

evAccessPointLocked()

reqTakeSnapshot()

:Camera

reqTakeSnapshot()

Harmony for SE Deskbook | 94 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Design Synthesis

4.5.2.2 Use Case Realization Uc2ControlExit

4.5.2.2.1 Update of the ArchitecturalDesignPkg

The steps to be performed are similar to the ones described in Section
4.5.2.1.1.

4.5.2.2.2 Allocation of System Block Properies to Parts

White-Box Activity Diagram Uc2ControlExit

4.5.2.2.3 Derivation of White-Box Sequence Diagrams

White-Box Use Case Scenario WB_Uc2Sc1 Nominal and Exception

WB_Uc2Sc1 Nominal and Exception

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 95

Case Study: Design Synthesis

4.5.2.2.4 Definition of Ports and Interfaces

IBD of the Realized Use Case Model Uc2ControlExit
with generated Ports and Interfaces

4.5.2.2.5 Definition of Realized Use Case Behavior

Note the reuse of behavior patterns in the statechart diagrams. The
statecharts SecSysControllerExit_Ctrl and ProcessigSecurityData are
extended copies of the ones used in the black-box Uc2ControlExit use
case. The statechart UnlockingAndLockingAccessPoint is an
unchanged copy.

Similar to the steps described in Section 4.5.2.2.5, the behavior of the
actor blocks User and Adminstrator needs to be extended by applying
the SE-Toolkit feature Create Test Bench. The state-based behavior of
the actor block AccessPoint needs to be extended graphically.

IBD_SecuritySystem

itsSecuritySystem1

itsFingerprintScanner1

itsCardReaderEntry1

itsCardReaderExit1

pSecSysControllerpUser

itsSecSysController1

pAccessPoint

pCardReaderExit

pAdmin

itsUser1

pCardReaderExit itsAccessPoint1

pSecSysController

itsAdmin1

pSecSysController

ProcessingSecurityCardData

ValidatingSecurityCardData

validateSecurityCard(CardStatus);

SecCardFailure

flagSecurityCardFailure(ScFailCount);

waitForRequest

reqValidateSecurityCard

[ScFailCount <3]

[else]

reqDisplayCardStatus(CardStatus) to pCardReaderExit

Fail3Times
[else]

CardValid

[CardStatus=="Valid"]

/ScFailCount=0;/ScFailCount=0;

reqValidateSecurityCard

[ScFailCount <3]

[else]

[else]

[CardStatus=="Valid"]

Harmony for SE Deskbook | 96 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Design Synthesis

4.5.2.2.6 Realized Use Case Verification

The realized use case model Uc2ControlExit, is verified
through model execution on the basis of the captured use
case scenarios. The correctness and completeness
analysis is based on the visual inspection of the model
behavior (animated Statechart and Sequence Diagrams).

4.5.2.2.7 Allocation of
Non-functional Requirements

The final step in the use case realization taskflow is the
allocation of non-functional requirements. In order to
assure that all use case related non-functional
requirements are considered, traceability links from the
relevant subsystem block to the non-functional system
requirements need to be defined using a <<satisfy>>
dependency.

Animated Sequence Diagram WB_Uc2Sc1 Nominal

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 97

Case Study: Design Synthesis

4.5.2.3 Integrated Use Case Realization

The final task in the architectural design phase is the Integrated Use
Case Realization, i.e.the merger of the realized use case models in
the Integrated System Architecture Model.

Before merging a realized use case model, care must be taken that in
the two models all operation names and associated system
requirements links are unique, i.e.

- If two operations with different names describe the same functionality

and are linked to the same system requirement, the names need to
be harmonized.

- If two operations have different names and describe different
functionality but are linked to the same requirement, the system
requirement needs to be split. For the child requirements respective
trace links have to be established.

- If two operations have the same name and are linked to the same
requirement but describe different functionality, the names need to
be modified and the system requirement split accordingly. For the
child requirements respective trace links have to be established. In
the case of changes the realized use case model needs to be
baselined accordingly.

Fig. 4-7 shows the Integrated Use Case Realization workflow.
The first step is the creation of a Rhapsody Harmony compliant project
SecSys_IA. The realized (WB) use case model Uc1ControlEntry was
chosen as first contributor and imported into this project.

It is important to keep in mind, that the subsequent integration of
realized use cases essentially focuses on the integration of the
respective architectural components. Once imported, additional steps
are needed to enable the collaboration (ref. Fig. 4-8).

Regarding the import of the realized use case model Uc2_ControlExit,
the relevant information will be captured in a separate Rhapsody
project Uc2ControlExit_HandOff. It should be noted, that this
project is only a temporary project, to be used only for the integration.

The use cases collaboration as well as the correctness and
completeness of the integrated system architecture model will be
verified through model execution.

Fig. 4-7 Integrated Use Case Realization Workflow

Fig. 4-8 Use Case Integration Task Flow and its Support
through the Rhapsody SE-Toolkit

Refactor Actors Behavior

Add to Model Packages

Integrate Imported
Block Statecharts

Refactor Integrated
Block Statecharts

Merge Blocks

Merge Interfaces Pkgs

Create / Update
Ports and Interfaces

SE-Toolkit Feature:
Merge Blocks

SE-Toolkit Feature:
Create Ports And Interfaces

SE-Toolkit Feature:
Create TestbenchRefactor Actors Behavior

Add to Model PackagesAdd to Model Packages

Integrate Imported
Block Statecharts
Integrate Imported
Block Statecharts

Refactor Integrated
Block Statecharts
Refactor Integrated
Block Statecharts

Merge BlocksMerge Blocks

Merge Interfaces PkgsMerge Interfaces Pkgs

Create / Update
Ports and Interfaces

Create / Update
Ports and Interfaces

SE-Toolkit Feature:
Merge Blocks

SE-Toolkit Feature:
Create Ports And Interfaces

SE-Toolkit Feature:
Create Testbench

Verify Collaboration
through Model Execution

Create Base IA Model

Realized
Uc1ControlEntry

Realized
Uc2ControlExit

Integrate Realized Use Case

Refactor Use Case Model

Uc2ControlExit_Handoff

Verify Collaboration
through Model Execution

Create Base IA Model

Realized
Uc1ControlEntry

Realized
Uc2ControlExit

Integrate Realized Use Case

Refactor Use Case ModelRefactor Use Case Model

Uc2ControlExit_Handoff

Harmony for SE Deskbook | 98 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Design Synthesis

4.5.2.3.1 Creation of Base IA Model

In the case study the realized use case model Uc1ControlEntry_AD
was chosen as the base Integrated System Architecture Model.

Create a Harmony compliant project SecSys_IA

In the RequirementsAnalysisPkg Delete from Model the
UseCaseDiagramsPkg

Delete from Model the FunctionalAnalysisPkg

Add to Model As unit from the Rhapsody project Uc1ControlEntry
the packages

- ActorPkg.sbs
- ArchitecturalDesignPkg.sbs
- InterfacesPkg.sbs

Delete from Model all attributes and operations of the block
SecuritySystem

In the InterfacesPkg

- Delete from Model the Uc1_BB_InterfacesPkg
- Move the interfaces in the Uc1_WB_Interfaces into the

InterfacesPkg and Delete from Model the empty
Uc1_WB_InterfacesPkg.

In the SecuritySystemDecompositionPkg Delete from Model the
package SecuritySystemWB_AD_Uc1

In the ActorPkg Delete from Model all functional analysis related
actor ports (pUc_Uc1ControlEntry).

Rhapsody Project Structure of SecSys_IA Model

2

1

4

6

7

8

3

5

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 99

Case Study: Design Synthesis

4.5.2.3.2 Configuring Realized Use Case Model Handoff

As mentioned in Section 4.5.2.3 only a subset of the realized use case
Uc2ControlExit – i.e. the components (blocks) of the respective
system architecture - will be integrated into the SecSys_IA model. For
this purpose a specific handoff model needs to be configured.

Create a Harmony compliant project Uc2ControlExit_HandOff

Delete from Model

- RequirementsAnalysisPkg and
- FunctionalAnalysisPkg

Add to Model from the Rhapsody project Uc2ControlExit the
packages

- ActorPkg.sbs
- ArchitecturalDesignPkg.sbs
- InterfacesPkg

In the InterfacesPkg Delete from Model the packages
Uc2_BB_InterfacesPkg and Uc2_WB_InterfacesPkg

In the SecuritySystemDecompositionPkg Delete from Model the
package SecuritySystemWB_AD_Uc2

In the IBD_SecuritySystem Delete from Model all ports and
connections

IBD of the HandOff Model Uc2ControlExit_HandOff

Rhapsody Project Structure of Uc2ControlExit_HandOff

2

1

3

4

5

6

itsSecuritySystem1

itsFingerprintScanner1

itsCardReaderEntry1

itsCardReaderExit1 itsSecSysController1itsUser1

itsAccessPoint1

itsAdmin1

IBD_SecuritySystem

Harmony for SE Deskbook | 100 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Design Synthesis

4.5.2.3.3 Integration of Realized Use Case

There are two concepts to integrate elements of two models

- Addition or replacement of model elements
(Rhapsody feature Add to Model) or

- Combination of model elements
(Rhapsody tool Diff/Merge)

Step 1: Add to Model Packages

The following packages of the Uc2ControlExit_HandOff model are
integrated into the SecSys_IA model using the Add to Model As Unit
feature:

- CardReaderExitPkg.sbs,
- SecSysControllerPkg.sbs,
- SecuritySystemWB_SD_Uc2.sbs,

In the package SecSysController_Import rename of the block
SecSysController to SecSysController_Import

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 101

Case Study: Design Synthesis

Step 2: Merge Interfaces Packages

Interfaces packages of two models are merged by means of the
Rhapsody Diff/Merge tool.

Preparation:
Create a Rhapsody project with an empty InterfacesPkg.
Save the model as EmptyModel.

Launch Rhapsody Diff/Merge and from the menue select
File > Compare

Select as Left side Rhapsody unit the InterfacesPkg.sbs in the
Uc2ControlExit_HandOff model as

Select as Right side Rhapsody unit the InterfacesPkg.sbs in
the SecSys_IA model

Check the Base-aware check-box and select the
InterfacesPkg.sbs in the EmptyModel as Base Rhapsody Unit

Check the differences: There shall only be elements (interfaces
and events) added or missing. If there are changes, they need
to be resolved manually before continuing.

Click the Start button to start the merge process:

Answer Yes to automatically merge all trivial differences. All
differences will be resolved automatically

From the menue select: File > Save merge asS
Overwrite the InterfacesPkg.sbs of the SecSys_IA model.

2

1

3

4

5

6

7

Harmony for SE Deskbook | 102 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Design Synthesis

Step 3: Merge Blocks

Operations, receptions and attributes of the block
SecSysControllerImport are merged with the block
SecSysController by means of the SE-Toolkit feature Merge Blocks.

In the Tools Menu select
Tools > SE-Tookit > Modeling Toolbox > General

In the SecSysControllerPkg_Import
select block SecSysController_Import

In the Modeling Toolbox dialog box
click Set Source

In the SecSysControllerPkg
select block SecSysController

In the Modeling Toolbox dialog box
click Set Desination

In the Modeling Toolbox dialog box
click Merge Blocks

3

2

1

4

5

6

5 3

6

2

4

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 103

Case Study: Design Synthesis

Step 4: Create/update Ports and Interfaces

The ports and interfaces of the SecSys_IA model are created/updated
by means of the SE Toolkit feature Create Ports And Interfaces

NOTE: In the imported Sequence Diagram package update the lifeline
names and check the autorealization status of messages.

Right-click SecuritySystemWB_SD_Uc2 and select
SE-Toolkit > CreatePorts And Interfaces.

Manually add Delegation Ports and associated interfaces

Manually connect ports

1

2

3

IBD of the updated SecSys_IA Model

IBD_SecuritySystem

Harmony for SE Deskbook | 104 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Design Synthesis

Step 5: Integrate Imported Block Statechart

Copy & paste the Statechart of the imported block into the
Statechard of the merged block and make it a concurrent state.

Once the Statechart of the imported block is copied into the
merged block statechart, Delete from Model the imported block
package.

Integrated State-based Behavior of Merged Block SecSysController

2 1

SecSysController

SecSysControlle rEntry_Ctrl

WaitForEntryReques t

reqTakeSnapshot to pCamera

reqValidateSecurityCard

ProcessingSecurityCardData

ScFail3TimesCardValid

ProcessingBiom etricData

BsFail3TimesBsTimeoutAuthenticated

Unlock ingAndLockingAccessPoint

/ logEntryData();

reqProcessAlert("User Access Disabled") to pAdmin

WaitForResetAlarm

reqRese tAlarm to pCardReaderEntry

reqRese tAlarm

A

A

reqAlarm to pCardReaderEntry

/disableUserAccount();

logAccountData();

/disableUserAccount();

logAccountData();

A

evAccessPointLocked

SecSysControlle rExit_Ctrl

WaitForExitRequest

ProcessingSecurityCardData

Fail3TimesCardValid

reqValidateSecurityCard

Unlock ingAndLockingAccessPoint

/logExitData();

reqProcessAlert("Exit Failure") to pAdmin

A

A

evAccessPointLocked

WaitForResetAlarm

reqRese tAlarm

reqRese tAlarm

reqAlarm

reqProcessAlert("TimeLimitViolation") to pAdmin

CheckingForTim elimitViolations

checkForTim eLimitViolations();

evTimeLim itViolated

reqValidateSecurityCard

/ logEntryData();

reqRese tAlarm

/disableUserAccount();

logAccountData();

/disableUserAccount();

logAccountData();

evAccessPointLocked

reqValidateSecurityCard

/logExitData();

evAccessPointLocked
reqRese tAlarm

evTimeLim itViolated

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 105

Case Study: Design Synthesis

Step 6: Refactor State-base Behavior

Statechart SecSysController_Ctrl Alternative 1

In the SecSysController_Exit_Ctrl Statechart and its Sub-
Statecharts update the Send Actions and change the label of the
connectors A and the EnterExit Points Fail3Times and CardValid.

Differentiate between the Entry request and Exit request

Refactored State-based Behavior of Block SecSysController (Alternative 1)

2
1

SecSysControllerCtrl

SecSysControllerEntry_Ctrl

WaitForEntryRequest

reqTakeSnapshot to pCamera

reqValidateSecurityCard[IS_PORT(pCardReaderEntry)]

ProcessingSecurityCardData_Entry

Fail3Times_EntryCardValid_Entry

ProcessingBiometricData

BsFail3TimesBsTimeoutAuthenticated

UnlockingAndLockingAccessPoint

/ logEntryData();

reqProcessAlert("User Access Disabled") to pAdmin

WaitForResetAlarm

reqResetAlarm to pCardReaderEntry

reqResetAlarm

A

A

reqAlarm to pCardReaderEntry

/disableUserAccount();
logAccountData();

/disableUserAccount();

logAccountData();

A

evAccessPointLocked

SecSysControllerExit_Ctrl

WaitForExitRequest

ProcessingSecurityCardData_Exit

Fail3Times_ExitCardValid_Exit

reqValidateSecurityCard[IS_PORT(pCardReaderExit)]

UnlockingAndLockingAccessPoint

/logExitData();

reqProcessAlert("Exit Failure") to pAdmin

WaitForResetAlarm

reqResetAlarm to pCardReaderExit

reqResetAlarm

reqAlarm to pCardReaderExit

B

evAccessPointLocked

B

reqProcessAlert("TimeLimitViolation") to pAdmin

CheckingForTimelimitViolations

checkForTimeLimitViolations(TimeLimitFlag);

/TimeLimitFlag=false; [TimeLimitFlag==true]

tm(t_Update)

reqValidateSecurityCard[IS_PORT(pCardReaderEntry)]

/ logEntryData();

reqResetAlarm

/disableUserAccount();
logAccountData();

/disableUserAccount();

logAccountData();

evAccessPointLocked

reqValidateSecurityCard[IS_PORT(pCardReaderExit)]

/logExitData();

reqResetAlarm
evAccessPointLocked

/TimeLimitFlag=false; [TimeLimitFlag==true]

tm(t_Update)

Harmony for SE Deskbook | 106 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Design Synthesis

Statechart SecSysControllerCtrl Alternative 2

An alternative strategy to refactor the integrated statebased behavior
of the SecSysController block is to manually merge the concurrent
processes SecSysControllerEntry_Ctrl and SecSysControllerExit_Ctrl.

SecSysController_Ctrl

WaitForEntryRequest

reqTakeSnapshot to pCamera

ProcessingSecurityCardData_Entry

Fail3TimesExit

FailT3TimesEntry

CardValidEntry

CardValidExit

ProcessingBiometricData

BsFail3TimesBsTimeoutAuthenticated

UnlockingAndLockingAccessPoint

/logEntryData();

/logExitData();

reqProcessAlert("User Access Disabled") to pAdmin

WaitForResetAlarm

reqResetAlarm to pCardReaderEntry

A

A

A

evAccessPointLocked

reqProcessAlert("Exit Failure") to pAdmin

[IS_PORT(pCardReaderEntry)]/
UserRequest="Entry";

[IS_PORT(pCardReaderExit)]/

UserRequest="Exit";

reqValidateSecurityCard

reqResetAlarm to pCardReaderExit

reqResetAlarm

[UserRequest=="Exit"]
[else]

reqProcessAlert("TimeLimitViolation") to pAdmin

/TimeLimitFlag=false; [TimeLimitFlag==true]

CheckingForTimelimitViolations

checkForTimeLimitViolations(TimeLimitFlag); tm(t_Update)

/logEntryData();

/logExitData();

evAccessPointLocked

[IS_PORT(pCardReaderEntry)]/
UserRequest="Entry";

[IS_PORT(pCardReaderExit)]/

UserRequest="Exit";

reqValidateSecurityCard

reqResetAlarm

[UserRequest=="Exit"]
[else]

/TimeLimitFlag=false; [TimeLimitFlag==true]

tm(t_Update)

ProcessingSecurityCardData_Entry

ValidatingSecurityCard

 validateSecurityCard(CardStatus);

reqDisplayCardStatus(CardStatus) to pCardReaderEntry

[UserRequest=="Entry"]

WaitForRequest

reqValidateSecurityCard

SecCardFailure

flagSecurityCardFailure(ScFailCount);
[ScFailCount<3]

Fail
[else]

reqDisplayCardStatus(CardStatus) to pCardReaderExit

[UserRequest=="Exit"]

[else]

Fail

reqAlarm to pCardReaderExit

reqAlarm to pCardReaderEntry

[else]

[UserRequest=="Entry"]

[else]

Fail3TimesExit

/disableUserAccount();
logAccountData();

FailT3TimesEntry

/disableUserAccount();
logAccountData();

CardValidEntry

[CardStatus=="Valid"]

CardValidExit

[CardStatus=="Valid"]

/ScFailCount=0;/ScFailCount=0;

[UserRequest=="Entry"]

reqValidateSecurityCard

[ScFailCount<3]

[else]

[UserRequest=="Exit"]

[else]

[else]

[UserRequest=="Entry"]

[else]

/disableUserAccount();
logAccountData();

/disableUserAccount();
logAccountData();

[CardStatus=="Valid"]

[CardStatus=="Valid"]

ProcessingBiometricData

reqEnableBiometricScan to pFingerprintScanner

WaitForBiometricScanInfo

BiometricScanFailure

 flagBiometricScanFailure(BsFailCount);

[BsFailCount<3]

retAuthenticationStatus

[else]

reqDisableBiometricScan to pFingerprintScanner

[params->AuthenticationStatus=="Authenticated"]

reqDisableBiometricScan to pFingerprintScanner

[BsFailCount=3]

reqAlarm to pCardReaderEntry

BsFail3Times

/disableUserAccount();
logAccountData();

BsTimeoutevBsTimeout

Authenticated

/BsFailCount=0;/BsFailCount=0;

[BsFailCount<3]

retAuthenticationStatus

[else]

[params->AuthenticationStatus=="Authenticated"]

[BsFailCount=3]

/disableUserAccount();
logAccountData();

evBsTimeout

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 107

Case Study: Design Synthesis

Actor Behavor

The behavior of the actor User needs to extended w.r.t. the additional
request via the port pCardReaderExit.. The extension is performed by
meas of the TE-Toolkit feature Create Testbench.

In the Internal Block Diagram IBD_SeuritySystem right-click the
User block and select SE-Toolkit > Create Test Bench.

Select No

Extended Behavior of the Actor Block User

The state-based behavior of the actor block AccessPoint needs to be
updated graphically.

AccessPointCtrl

locked

unlocking

reqUnlockAccessPoint

unlocked

locking

reqLockAccessPoint

evAccessPointUnlocked to pSecSysController

tm(1000)

evAccessPointLocked to pSecSysController

tm(1000)

reqUnlockAccessPoint

reqLockAccessPoint

tm(1000)tm(1000)

2

1

Harmony for SE Deskbook | 108 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Design Synthesis

4.5.2.3.4 Verification of Use Cases Collaboration

The collaboraton of the merged realized use case models in
the Integrated System Architecture model is verified through
model execution on the basis of the captured use case
scenarios. The correctness and completeness analysis is
based on the visual inspection of the model behavior
(animated Statecharts and Sequence Diagrams).

NOTE: The model verification should cover both alternative
statecharts of the SecSysController block.

Right-click the statechart and select Set As Main Behavior
and re-generate code.

SecSys_IA Verification
Animated Sequence Diagram

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 109

Case Study: Hand-Off to Subsystem Development

5 Hand-Off to Subsystem Development

In the Security System case study it was decided that the card readers
and the fingerprint scanner should be COTS components while the
SecSysController subsystem had to be developed. As outlined in
Section 2.2.4, the hand-off to the subsequent development is an
executable model derived from the baselined Integrated System
Architecture Model.

Create a Harmony compliant Rhapsody project and name it
SecSysController_HandOff

Delete from Model the

- FunctionalAnalysisPkg and
- UseCaseDiagramsPkg

Add to Model As unit from the SecSys_RA project the
RequirementsPkg.sbs

Add to Model As unit from the SecSys_IA project

- SecSysControllerPkg.sbs
- SecuritySystemWB_SD_Uc1.sbs
- SecuritySystemWB_SD_Uc2.sbs
- InterfacesPkg.sbs

As the interfaces will be re-generated in this workflow,
Delete from Model in the InterfacesPkg all interfaces.

Move the SecSysControllerPkg and the Sequence Diagram
packages into the DesignSymthesisPkg.

Manually add the following actors to the ActorPkg:

- Admin
- Camera
- AccessPoint
- CardReaderEntry
- CardReaderExit
- FingerprintScanner

Create a BDD_SecSysController and an IBD_SecSysController

BDD of the SecSysController_HandOff Model

Project Structure of the SecSysController_HandOff Model

SecSysController

«Block»

Admin

1 1

Admin

1 11 1

Camera

1

Camera

1

CardReaderEntry

1 11 1

CardReaderEntry

1 1

CardReaderExit

1 1

CardReaderExit

1 11 1

FingerprintScanner

1 1

FingerprintScanner

1 11 1

AccessPoint

1 11 1

AccessPoint

1 1

BDD_SecSysController

3

2

1

4

5

6

8

7

Harmony for SE Deskbook | 110 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Hand-Off to Subsystem Development

Taking into consideration the new system scope, update the
Sequence Diagrams in the packages

- SecuritySystemWB_SD_Uc1 and
- SecuritySystemWB_SD_Uc2

NOTE: Do not forget to autorealize the message to the actors.

It is recommended to rename the updated Sequence Diagrams and to
move them into a new package (ref. below).

:CardReader

Entry

:SecSysController

CardStatus=="Valid"

AuthenticationStatus==
"Authenticated"

logEntryData()

t_Unlocked

reqValidateSecurityCard()

reqDisplayCardStatus(CardStatus)

validateSecurityCard(CardStatus)

logEntryData()

t_Unlocked

reqValidateSecurityCard()

reqDisplayCardStatus(CardStatus)

validateSecurityCard(CardStatus)

:Fingerprint

Scanner

retAuthenticationStatus(AuthenticationStatus)

reqDisableBiometricScan()

reqEnableBiometricScan()

retAuthenticationStatus(AuthenticationStatus)

reqDisableBiometricScan()

reqEnableBiometricScan()

reqUnlockAccessPoint()

:AccessPoint

reqUnlockAccessPoint()

evAccessPointUnlocked()

reqLockAccessPoint()

evAccessPointLocked()

evAccessPointUnlocked()

reqLockAccessPoint()

evAccessPointLocked()

:Camera

reqTakeSnapshot()reqTakeSnapshot()

SecSysControllerSc1

:CardReader
Entry

validateSecurityCard(CardStatus)

:SecSysController

CardStatus=="Not Valid"

ScFailCount=3

validateSecurityCard(CardStatus)

reqDisplayCardStatus(CardStatus)

flagSecurityCardFailure(ScFailCount)

disableUserAccount()

logAccountData()

reqAlarm()

reqResetAlarm()

reqDisplayCardStatus(CardStatus)

flagSecurityCardFailure(ScFailCount)

disableUserAccount()

logAccountData()

reqAlarm()

reqResetAlarm()

reqProcessAlert(AlertType)

:Admin

reqResetAlarm()

reqProcessAlert(AlertType)

reqResetAlarm()

SecSysControllerSc2

:CardReader
Entry

:SecSysController

AuthenticationStatus==
"Not Authenticated"

BsFailCount=3

flagBiometricScanFailure(BsFailCount)

disableUserAccount()

logAccountData()

reqAlarm()

reqResetAlarm()

flagBiometricScanFailure(BsFailCount)

disableUserAccount()

logAccountData()

reqAlarm()

reqResetAlarm()

:Fingerprint
Scanner

retAuthenticationStatus(AuthenticationStatus)

reqDisableBiometricScan()

retAuthenticationStatus(AuthenticationStatus)

reqDisableBiometricScan()

reqProcessAlert(AlertType)

:Admin

reqResetAlarm()

reqProcessAlert(AlertType)

reqResetAlarm()

SecSysControllerSc3

9

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 111

Case Study: Hand-Off to Subsystem Development

Based on the updated Sequence Diagrams, create ports and
interfaces by means of the respective SE-Toolkit feature.

Capture by means of the SE-Toolkit feature Create Testbench.
the behavior of the actor blocks

- CardReader Entry
- FingerprintScanner
- CardReaderExit
- Camera
- Administrator

The state-based behavior of the actor block AccessPoint
describe graphically (ref. SecSys_IA).

Populated IBD of the SecSysController_HandOff Model

Verify the SecSysController_HandOff model through model
execution

State-based Behavior of the SecSysController_HandOff Model.
 For Sub-Statecharts refer to the IA Model (Section 4.5.2.3)

SecSysController_Ctrl

WaitForEntryRequest

reqTakeSnapshot to pCamera

ProcessingSecurityCardData

Fail3TimesExit

FailT3TimesEntry

CardValidEntry

CardValidExit

ProcessingBiometricData

BsFail3TimesBsTimeoutAuthenticated

UnlockingAndLockingAccessPoint

/logEntryData();

/logExitData();

reqProcessAlert("User Access Disabled") to pAdmin

WaitForResetAlarm

reqResetAlarm to pCardReaderEntry

A

A

A

evAccessPointLocked

reqProcessAlert("Exit Failure") to pAdmin

[IS_PORT(pCardReaderEntry)]/
UserRequest="Entry";

[IS_PORT(pCardReaderExit)]/

UserRequest="Exit";

reqValidateSecurityCard

reqResetAlarm to pCardReaderExit

reqResetAlarm

[UserRequest=="Exit"]
[else]

reqProcessAlert("TimeLimitViolation") to pAdmin

CheckingForTimelimitViolations

checkForTimeLimitViolations(TimeLimitFlag);

/TimeLimitFlag=false [TimeLimitFlag==true]

tm(t_Update)

/logEntryData();

/logExitData();

evAccessPointLocked

[IS_PORT(pCardReaderEntry)]/
UserRequest="Entry";

[IS_PORT(pCardReaderExit)]/

UserRequest="Exit";

reqValidateSecurityCard

reqResetAlarm

[UserRequest=="Exit"]
[else]

/TimeLimitFlag=false [TimeLimitFlag==true]

tm(t_Update)

itsSecSysController1

pCardReaderExit

pAdmin

pAccessPoint

pFingerprintScanner

pCardReaderEntry

pCamera

itsAdmin1

pSecSysController

itsCamera1

pSecSysController

itsAccessPoint1

pSecSysController

pSecSysController

itsCardReaderEntry

pSecSysController

itsCardReaderEntry

pSecSysController

itsFingerprintScanner

pSecSysController

itsFingerprintScanner

pSecSysController

itsCardReaderExit

pSecSysController

itsCardReaderExit

IBD_SecSysController

10

11

12

Harmony for SE Deskbook | 112 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Hand-Off to Subsystem Development

Systems Requirements Coverage of the SecSysController_HandOff Model

NOTE: The table below was generated by means of the Rational Publishing Engine (RPE)

ID System Requirement
Requirement

Type
Satisfied by

SYS1
Three Attempts On Employee ID Entry
Upon entry the user shall be allowed three attempts on card identification.

Functional
ScFailCount
flagSecurityCardFailure

SYS2
Three Attempts On Biometric Data Entry
Upon entry the user shall be allowed three biometric data entries.

Functional
BsFailCount
flagBiometricScanFailure

SYS3
Disabling User Account
After three failed attempts at card identification or biometric data entry the
user account shall be disabled.

Functional disableUserAccount

SYS4
Denied Entry Notification
Any denied access attempt shall be logged and account details sent to the
administrator.

Functional
logAccountData
logEntryData
reqProcessAlert

SYS5
Out of Date Cards
Out of date cards shall deny entry and invalidate the card.

Functional validateSecurityCard

SYS6
Authorization of Security Card – Entry
Access to the secure area shall only be allowed with a valid security card.

Functional CardStatus

SYS7
Two Independent Security Checks
Secure areas shall be protected by two independent security checks.

Functional SecSysController

SYS8
Alarm – Entry
On a denied entry an alarm signal shall be raised.

Functional reqAlarm

SYS9
Employee ID Card Identification – Entry
Entry shall be protected by a security check based upon employee ID.

Functional validateSecurityCard

SYS10
Visualization of Security Card Check Status – Entry
The user shall be visually informed about the status of his/her ID card
check.

Functional reqDisplayCardStatus

SYS11
Security Card Information
Security cards only contain the employee name and ID and will be
renewed yearly.

Functional validateSecurityCard

SYS12
Visualization of Biometric Data Check Status
The user shall be visually informed about the status of his/her biometric
data check.

Functional retAuthenticationStatus

SYS13
Approval of Biometric Data
The user shall not be allowed access unless his/her biometric data are
recognized.

Functional AuthenticationStatus

SYS14
Biometric Scan
Entry to the secure areas shall be protected by a second independent
security check, based upon biometric data.

Functional reqEnableBiometricScan

SYS15
Image Capture
An image shall be taken of any person, at the initial attempt, when trying to
access a secure area.

Functional reqTakeSnapshot

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 113

Case Study: Hand-Off to Subsystem Development

System Requirements Coverage of the SecSysController_HandOff Model (cont’d)

ID System Requirement
Requirement

Type
Satisfied by

SYS16
Three Attempts On Employee ID Exit
Upon exit the user shall be allowed three attempts on card identification.

Functional flagSecurityCardFailure

SYS16
Three Attempts On Employee ID Exit
Upon exit the user shall be allowed three attempts on card identification.

Functional flagSecurityCardFailure

SYS17
Time Limit Violation
An alarm shall notify if a person stays longer than 10 hours in the secure
area.

Functional checkForTimeLimitViolations

SYS18
Denied Exit Notification
The administrator shall be notified about any denied exit. The notification
shall include user account details.

Functional
logExitData
reqProcessAlert

SYS19
Alarm – Exit
On a denied exit an alarm signal shall be raised.

Functional reqAlarm

SYS20
Employee ID Card Identification – Exit
Exit shall be protected by a security check based upon employee ID.

Functional validateSecurityCard

SYS21
Visualization of Security Card Check Status – Exit
The user shall be visually informed about the status of his/her ID card
check.

Functional reqDisplayCardStatus

SYS24
Authorization of Security Card – Exit
The user shall not be allowed to exit until the security card has been
successfully authorized.

Functional CardStatus

SYS25
Entry Time
The user shall be given sufficient time to enter the secure area.

Non-
Functional

t_Unlocked

SYS26
Time Between Two Independent Checks
The time between the two independent security checks shall not exceed a
configurable period.

Non-
Functional

evBsTimeout

SYS27
Processing User Request
The system shall only process one user at a time.

Non-
Functional

SecSysController

SYS28
Biometric Data Storage
Biometric data shall be stored in the system database and not on the
security card.

Non-
Functional

SecSysController

SYS29
Time Recording
The time a user spends in a secure area shall be recorded.

Non-
Functional

SecSysController
logExitData

SYS30
Exit Time
The user shall be given sufficient time to exit the secure area.

Non-
Functional

SecSysController

SYS31
Automatic Securing the Secure Area – Entry
Once the user has entered the secure area the system shall automatically
secure itself.

Functional evAccessPointLocked

SYS32
Automatic Securing the Secure Area – Exit
Once the user has exited the secure area the system shall automatically
secure itself.

Functional evAccessPointLocked

SYS33
Configuration of Entry and Exit Time
The time to enter and exit the secure area shall be customizable.

Non-
Functional

SecSysController

Harmony for SE Deskbook | 114 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Case Study: Hand-Off to Subsystem Development

Verification of the SecSysController_HandOff Model through Model Execution

NOTE:
Timeout events intentionally are
not shown in this diagram.

:Camera:AccessPoint:Admin:SecSysController

reqProcessAlert(AlertType = Exit Failure)

reqResetAlarm()

reqTakeSnapshot()

reqUnlockAccessPoint()

evAccessPointUnlocked()

reqLockAccessPoint()

evAccessPointLocked()

flagSecurityCardFailure(ScFailCount = 2)

disableUserAccount()

logAccountData()

validateSecurityCard(CardStatus = Valid)

logEntryData()

validateSecurityCard(CardStatus = Not Valid)

reqProcessAlert(AlertType = Exit Failure)

reqResetAlarm()

reqTakeSnapshot()

reqUnlockAccessPoint()

evAccessPointUnlocked()

reqLockAccessPoint()

evAccessPointLocked()

flagSecurityCardFailure(ScFailCount = 2)

disableUserAccount()

logAccountData()

validateSecurityCard(CardStatus = Valid)

logEntryData()

validateSecurityCard(CardStatus = Not Valid)

:Fingerprint

Scanner

reqEnableBiometricScan()

retAuthenticationStatus(AuthenticationStatus = Authenticated)

reqDisableBiometricScan()

reqEnableBiometricScan()

retAuthenticationStatus(AuthenticationStatus = Authenticated)

reqDisableBiometricScan()

:CardReader

Exit

reqValidateSecurityCard()

reqDisplayCardStatus(CardStatus = Not Valid)

reqAlarm()

reqResetAlarm()

reqValidateSecurityCard()

reqDisplayCardStatus(CardStatus = Not Valid)

reqAlarm()

reqResetAlarm()

:CardReader

Entry

reqValidateSecurityCard()

reqDisplayCardStatus(CardStatus = Valid)

reqValidateSecurityCard()

reqDisplayCardStatus(CardStatus = Valid)

EntryEntry

Exit, ExceptionExit, Exception

Animated SecSysControllerModelVerification

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 115

Appendix

6 Appendix

A1 Modeling Guidelines

This chapter specifies the guidelines and best practices to model a system using SysML. These guidelines are a symbiosis of many years of
modeling experience in different industry branches (Aerospace, Defense, Automotive, Telecom, Medical, Industrial Automation, and Consumer
Electronics) and have been proven to significantly enhance the readability and communication of model-based specifications.

It starts with general guidelines and drawing conventions. SysML diagrams that are considered essential and associated elements then are
discussed in detail. Finally, an approach which extends the SysML profile for project-specific needs is described.

A1.1 General Guidelines and Drawing Conventions

The following guidelines and drawing conventions are recommended for all diagrams:

• Create simple, focused diagrams with a small number of elements.
As a rule of thumb, avoid placing more than ten major elements
(block, use case, actor, etc.) on a diagram.

• Ensure all diagrams can be printed on standard 8.5x11 or A4
paper.

• Arrange elements in diagrams to avoid crossing of lines. All lines
should be straight or rectilinear.

• Create elements with a consistent size. Avoid clutter and chaos by
arranging elements with equidistant spacing and alignment.

• The default Rhapsody fonts, shapes, symbols, line styles, and
colors shall be used consistently in all packages in the model.

• Position related elements close together in diagrams.

• Ensure elements in diagrams have the same level of abstraction.

• Organize diagrams in a hierarchical fashion. Locate diagrams in
packages corresponding to their relative position in the system
hierarchy.

• Ensure accurate and complete descriptions are entered for all
model elements to assist in understanding the model and to
facilitate the eventual hand-off of the model. These descriptions
must also support the auto-generated documentation from the
model.

• Avoid excessive use of description notes in diagrams. It’s generally
recommended to put these descriptions in the description field of
the corresponding graphical artifact

• Do not use comments in the model.

Harmony for SE Deskbook | 116 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Appendix

A1.2 Use Case Diagram

Use Case Diagrams capture the functional requirements of a system
by describing interactions between users of the system and the
system itself. Users of a given system could be external people or
other systems. A use case diagram is comprised of a system
boundary that contains a set of use cases. Actors lie outside of the
system boundary and are bound to use cases via associations.

Elements and Artifacts

Use Case: A use case defines the system context. Name use
cases using verbs that describe their ultimate goal.

Actor: A role that an external user plays with respect to the
system. Note that external users could be people or other systems.
Use domain-specific, role-based names for actors.

System Boundary: Distinguishes the border between the actors
and the system containing the use cases.

Association: Connects an actor with a use case, indicating which
actors carry out which use cases.

Dependency: Connects two use cases, indicating which use
cases depend on other use cases. For simplicity, only the
<<include>> stereotype should be used for use case dependencies.
Other stereotypes, like <<extend>>, should be avoided.

Use Case Diagram

Guidelines and Drawing Conventions

• A system typically has many use cases. To manage this
complexity, group use cases into Use Case Diagrams.

• Ensure each use case has a clear goal and that its functionality
falls within the bounds of the system. Keep the goal broad enough
to break the use case down into several scenarios (rule of thumb:
5<n<25 “sunny day scenarios”).

• Every actor in a use case diagram must be associated with one or
more use cases. Every use case must be directly associated with
at least one actor

Naming Conventions

• When multiple use case diagrams are defined, use case diagrams
shall be numbered: UCD<Nr> <Use Case Diagram Name>

• When multiple use case diagrams are defined, the name of a use
case shall include the reference to its associated use case
diagram: UCD<Nr>_UC<Nr> <Use Case Name>.

• Note: Use case names may have spaces

• The use case name shall start with a verb.

UCD_SecuritySystem

UserUser

AdminAdmin AccessPointAccessPoint

CameraCamera

Security System

Uc1Control Entry

Uc2Control Exit

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 117

Appendix

A1.3 Block Definition Diagram

The SysML Block Definition Diagram shows the basic structural
elements (blocks) and their relationships / dependencies. Basic
structural elements may be actors and subsytems or interfaces.

Elements and Artifacts

 Block: An entity that can contain data and behavior. A system
block may be decomposed into sub-blocks. A system block is a re-
usable design element.

 Actor: A role that an external user plays with respect to the
system. Note: This element is not shown in the Rhapsody toolbar. The
actor needs to be defined in the browser (-> ActorsPkg) and then
dragged into the block definition diagram.

 Interface: A contract comprised of event receptions and/or
operations. In Harmony for Systems Engineering an interface only
contains event receptions. Any system block that realizes the interface
must fulfill that contract. An interface does not contain behavior.

 Association: Represents a bidirectional relationship between
system blocks and actors.

 Directed Association: Represents a uni-directional relationship
between system blocks and actors.

 Directed Composition: Shows the hierarchical decomposition of
a system block into its sub-blocks.

 Generalization: Shows the relationship between a more general
system block and a more specific system block. The more specific
system block is fully consistent with the more general system block
and contains additional information or behavior.

 Dependency: Shows the relationship between two system blocks
in which one block requires the presence of another block.

Block Definition Diagram

Guidelines and Drawing Conventions

• Use the Label feature on the Display Options to keep block names
simple within block definition diagrams, even when they are
referencing blocks across packages.

• Blocks should not show attributes, operations and ports.

• Use the composition relationship to show block decomposition – do
not show blocks inside other blocks.

• The stick figure should only be used to visualize actors that are
external to the system.

Naming Conventions

The name of a block definition diagram should have the pre-fix
“BDD_”.

BDD_SecuritySystem

SecuritySystem
«Block»

CardReaderEntry

1

CardReaderEntry

1 1

FingerprintScanner

1

FingerprintScanner

SecSysController
«Block»111

CardReaderExit

1

CardReaderExit

User

1

User

1

Admin

1 1

Admin

1 11 1

Camera

11

Camera

AccessPoint

11 11

AccessPoint

11

Harmony for SE Deskbook | 118 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Appendix

A1.4 Internal Block Diagram

The SysML Internal Block Diagram shows the realization of the system
structure defined in the Block Definition Diagram. It is comprised of a
set of nested parts (i.e. instances of the blocks) that are inter-
connected via ports and connectors.

Elements and Artifacts

 StandardPort: A named interaction point assigned to a block,
through which instances of this block can exchange messages.

 FlowPort: specifies the input and output items that may flow
between a block and its environment. Input and output items may
include data as well as physical entities, such as fluids, solids, gases,
and energy.

 Connector: A connection between two ports through which
information flows via interfaces. When two parts share the same
parent part, the connection between the two blocks is modeled
with a single connector. However, when two parts have different
parents, the connection between the two parts requires multiple
connectors routed through delegation ports.

Internal Block Diagram

itsSecuritySystem 1

CardReader_Entry 1

LED2_Entry:tLED
LED1_Entry:tLED

Alarm_Entry:bool

pSecSysController

pUser

itsFingerprintScanner 1

pUser pSecSysController

itsSecSysController 1

Alarm_Exit:bool

LED2_Exit:tLED
LED1_Exit:tLED

LED2_Entry:tLED
LED1_Entry:tLED

Alarm_Entry:bool

pCardReader_Exit

pAdmin

pCamera

pAccessPoint

pFingerprintScanner

pCardReader_Entry

CardReader_Exit 1

Alarm_Exit:bool

LED2_Exit:tLED

LED1_Exit:tLED

pSecSysController

pUser

pUser_FpScan

pUser_Exit

pUser_Entry

pAdmin

pCamera

pAccessPoint

1

pSecSysController

itsAccessPoint 1

pSecSysController

itsAdmin 1

pSecSysController

itsUser1

pCardReader_Exit
pFingerprintScanner

pCardReader_Entry

IBD_SecuritySystem_Extended

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 119

Appendix

Guidelines and Drawing Conventions

• Show part decomposition by placing sub parts inside of their
owning part.

• When possible, try to arrange parts in a vertical fashion. Also, try
to place ports that communicate outside of the system tier on the
left side of the block and ports that communicate within the system
tier on the right side of the block.

• Use the Label feature on the Display Options to keep part names
simple within internal block diagrams, even when they are
referencing parts or system blocks across packages.

• Depending on the level of detail you are trying to convey in the
diagram, you may hide or show attributes, and operations. All
communication between parts occurs through ports and well
defined interfaces.

• Depending on the level of detail you are trying to convey in a
specific diagram, you may hide the pictograms of port interfaces
(lollipop/socket) to avoid clutter.

• Avoid creating “gigantic” internal block diagrams that show all port
connections between every part in the system, as these diagrams
quickly become over-cluttered and unreadable. Instead create
separate internal block diagrams with a mission focussed on
showing a specific collaboration or part decomposition.

Naming Conventions

• The name of an internal block diagram should have the pre-fix
“IBD_”.

• Parts should keep the default name (its<BlockName) created by
Rhapsody. Only in use case models, the actor instance names
should refer to the use case: (Ucd<Nr>_) Uc<Nr>A_<ActorName>.

• Naming convention for ports: p<CounterpartName>

• Port names should be placed inside the associated part.

• Interface names should be referenced to the sender port.
Naming convention: i<Sender>_<Receiver>

Harmony for SE Deskbook | 120 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Appendix

A1.5 Activity Diagram

The Activity Diagram describes a workflow, business process, or
algorithm by decomposing the flow of execution into a set of actions
and sub activities. An activity diagram can be a simple linear
sequence of actions or it can be a complex series of parallel actions
with conditional branching and concurrency. Swim lanes can be
added to the activity diagram to indicate the entities responsible for
performing each activity.

NOTE: In Harmony for Systems Engineering the terms activity, action
and operation are synonymous.

Elements and Artifacts

 Action: An action represents a primitive operation. In Harmony
for Systems Engineering also actions stereotyped
<<MessageAction>> are used. These actions contain only messages
to and/or from an actor.

 Subactivity: A subactivity that is further decomposed into a set
of actions and subactivities.

NOTE: It is recommended not to use subactivities. A decomposed
subactivity cannot partitioned into swim lanes. If a decomposed sub
activity needs to be partitioned into swim lanes (ref. architectural
design) the parent action should be decomposed using a Call
Behavior action.

 Call Behavior: References to another activity diagram as an
activity.

 Control Flow: Actions are linked via control flow. Execution
begins in an activity when a transition flows into it. A transition from
an activity fires when the activity has completed and any guard
conditions on the transition have been met.

 Initial Flow: A control flow that leads to the initial action in
the activity diagram.

 Fork Node: A compound control flow that connects a single
control flow to multiple concurrent activities.

 Join Node: A compound control flow that merges the control
flow from multiple concurrent activities.

 Merge Node: Routes each input received to the output. Unlike
the Join Node it does not require tokens on all its inputs before
offering them on its output flow.

 Swim Lane Frame: Draws a frame around the entire set of
activitie so that they can be partitioned into swim lanes.

 Swim Lane Divider: Places a vertical partition within the swim
lane frame. Each swim lane represents an entity that is responsible
for performing the activities in that swim lane. Control flows can cross
swim lanes.

 Decision Node: A condition connector splits a single control flow
into multiple branches, each containing a guard. The guards on each
branch should be orthogonal conditions, though they do not need to
cover all possibilities. An “else” guard should be added to provide a
default branch when no other guards are met.

 Activity Final: Terminates the control flow of the activity
diagram.

 Diagram Connector: A diagram connector helps manage
diagram complexity by allowing jumping to different sections of the
activity diagram to avoid line crossing.

 Action Pin: In SysML the Input/Output shows the input data of
an action. In Harmony for Systems Engineering action pins -
stereotyped <<ActorPin>> - are used to depict the link between an
action and an actor. In this case the name of the pin has the name of
the associated actor. The arrow in the pin shows the direction of the
respective link (i.e. In or Out). Do not use combined In/Out pins.

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 121

Appendix

Activity Diagram

Guidelines and Drawing Conventions

• In Harmony for Systems Engineering, the activity diagram is used
exclusively to describe the functional flow through a use case.
Therefore, select the activity diagram mode “”Analysis”.

• Document the pre-conditions in the respective tag of the diagram.

• Actor swim lanes should not be used. The link of an activity to the
actor should be described through action pins, stereotyped
<<ActorPIN>>>.

• When performing an operational decomposition of a complex
system, the activities at one system tier can become the use cases
in the next lower system tier.

• Activity diagrams should flow vertically from top to bottom. The
initial action should be located near the top of the diagram and any
termination states should be located near the bottom of the
diagram.

• Use the statechart action language to express guards to provide
the best transition to statechart diagrams. See the appendix A3A6
for more details on Rhapsody’s action language.

• All control flow lines should be rectilinear or straight. Control flows
should not cross each other or cross through activities.

• Diagram connectors should only be used when the readability of an
activity diagram is disturbed by a direct control flow.

• Control flows and initial flows cannot have triggers.

• To reference another activity diagram as an action, drag that
activity diagram from the browser onto the diagram. This creates a
call behavior action that links to the external activity diagram.

• Generally, an action should correspond to an operation to be
performed in the associated block. Exception: Actions stereotyped
<<Message Action>> which describe the reception or transmittion
of a message, e.g.

Harmony for SE Deskbook | 122 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Appendix

NOTE: In the case of a message exchange with external actors
respective actor pins need to be added to the message action, e.g.

• All actions should have only one exit transition. Any scenarios
where multiple transitions flow out of an action should be explicitly
drawn using a condition connector or a fork node.

Naming Conventions

• The diagram shall have the associated use case name in plain text
at the top of the diagram.

• Activity names shall start with a verb, beginning with a lover case
letter, and map directly to the names of operations on system
blocks.

:AccessPoint

reqUnlockAccessPoint()

:SecSysController

reqUnlockAccessPoint()

evAccessPointUnlocked()

reqLockAccessPoint()

evAccessPointLocked()

t_Unlocked evAccessPointUnlocked()

reqLockAccessPoint()

evAccessPointLocked()

t_Unlocked

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 123

Appendix

A1.6 Sequence Diagram

Sequence Diagrams elaborate on requirements specified in use cases
and activity diagrams by showing how actors and blocks collaborate in
some behavior. A sequence diagram represents one or more
scenarios through a use case.

A sequence diagram is comprised of vertical lifelines for the actors and
blocks along with an ordered set of messages passed between these
entities over a period of time.

Elements and Artifacts

 Instance Line: Draws a vertical lifeline for an actor or
block.

 Message: Creates a horizontal message line between two
lifelines or looped back onto the same lifeline. All messages
between blocks are considered asynchronous. Reflexive (loop
back) messages are considered synchronous operations and
represent simple, private activities within the block.

 Condition Mark: Represents a mode/state change in a
block. Can also be used to specify preconditions and post
conditions for each instance on the sequence diagram.

 Time Interval: An annotation on a lifeline that identifies a
time constraint between two points in the scenario.

 Interaction Occurrence (Reference Sequence Diagram):
Helps manage scenario complexity by cross-referencing other
sequence diagrams.

 Interaction Operator: Helps to group related elements in
a sequence diagram. This includes the option of defining specific
conditions under which each group of elements will occur.

 Operand Separator: Used to create subgroups of
interaction operators (e.g. concurrent operations or alternatives).

 Partition Line: Used to divide a scenario into sections of
related messages. Each partition line has its own text field used
to describe that section of the scenario.

 Constraint: A semantic condition or restriction expressed
as text.

[else]

[AxisB isHomed]alt

[AxisE inSafePos]opt

[AxisC inSafePos]opt

[else]

[AxisB isHomed]alt

[AxisE inSafePos]opt

[AxisC inSafePos]opt

User Uc1_HomingAndManualMode

DirectionA selected

Preconditions:
ManualMode and AxisB selected

reqSetSpeed(Speed)

setSpeed(Speed)

checkPosAxisC()

checkPosAxisE()

checkStatusAxisB()

mvCmddAxisB_Slow()

mvCmddAxisB_Normal()

setDirection(Direction)

reqSetDirection(Direction)

reqMoveAxisB()

reqMoveAxisB()

reqSetSpeed(Speed)

setSpeed(Speed)

checkPosAxisC()

checkPosAxisE()

checkStatusAxisB()

mvCmddAxisB_Slow()

mvCmddAxisB_Normal()

setDirection(Direction)

reqSetDirection(Direction)

reqMoveAxisB()

reqMoveAxisB()

moveAxisB_Sc1

Sequence Diagram

Harmony for SE Deskbook | 124 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Appendix

Guidelines and Drawing Conventions

• Pre- and post-conditions should be documented in condition marks
on respective lifelines or in respective tags of the diagram.

• If possible, arrange lifelines such that the message exchange
occurs in a “general” left-to-right flow from the top of the sequence
down to the bottom. In other words, arrange the order of lifelines to
minimize message zigzagging.

• For documentation reasons the print-out of a scenario should be
captured on one page.

• Divide complicated scenarios into manageable, well-documented,
logically related groups of messages using partition lines.

• Interaction Operators should not be nested deeper than 3 hierarchy
levels.

• Extract reused portions of scenarios into separate sequence
diagrams that are included using interaction occurrences.

• All message lines should be horizontal, rather than diagonal.
Asynchronous messages between blocks have an open arrowhead
and synchronous, reflexive messages have a filled arrowhead.

• Stereotype messages according to their associated protocol
(e.g. M1553, Ethernet, etc S).

• Use the statechart diagram action language to express constraints
to provide the best transition to statechart diagrams.
See the appendix A6 for more details on Rhapsody’s action
language.

• If a condition mark represents a mode/state change in reaction to a
respective message, the condition mark should match the name of
the state in the statechart diagram.

• Do not show operations on the actor lifelines.

• Do not use timeout in a sequence diagram. Rather describe a time
constraint by means of Time Intervals.

Naming Conventions

The following table summarizes the recommended naming
conventions for asynchronous messages:

Name Description

req<Service> Used to request a service (operation) on a
block. These messages are followed by a
reflexive message on the receiving block
indicating the execution of the service.

Example: reqReadSecurityCard

The corresponding reflexive message
name excludes the “req” prefix and begins
with a lower case letter:

Example: readSecurityCard

ret<Service>Status Used to provide results of a service
(operation) back to the requester.

Example:
retAuthenticateBiometricDataStatus

ev<Event> Used to send a notification of change

Example: evAccessPointLocked

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 125

Appendix

A1.7 Statechart Diagram

A Statechart Diagram shows the state-based behavior of a block
across many scenarios. It is comprised of a set of states joined by
transitions and various connectors. An event may trigger a transition
from one state to another. Actions can be performed on transitions
and on state entry/exit. See the appendix for more details on
Rhapsody’s action language.

Classically, a statechart diagram depicts the behavior of reactive
blocks – that is, blocks that maintain their history over time and react
to events. However, when modeling a system, the behavior of blocks
is always captured in statechart diagrams backed by supporting
attributes and operations, as all communication between blocks occurs
through ports using asynchronous events.

Elements and Artifacts

 State: A state typically models a period of time during the life of a
block while it is performing an activity or waiting for some event to
occur. States can also be used to model a set of related values in a
block. A state that contains multiple sub states is called an “or” state
or composite state. A state that contains two or more concurrent
regions is called an “and” state or orthogonal state. Actions can be
performed on state entry and exit.

 Transition: A transition from a state defines the response of a
block in that state to an event. Transitions may flow through one or
more connectors (defined below) and ultimately route to a new state or
loop back to the original state. Transitions can have actions and
guards that make them conditional.

 Default Transition: A transition that leads to the state (or the sub
state in an “or” state or “and” state) that should be entered by default.

 And Line: Used to create an “and” state by dividing a state into
multiple orthogonal, concurrent regions.

 Fork Synch Bar: A compound transition that connects a single
transition to multiple orthogonal destinations.

 Join Synch Bar: A compound transition that merges transitions
from different orthogonal states.

 Condition Connector: A condition connector splits a single
transition into multiple branches, each with a guard. The guards on
each branch should be orthogonal conditions, though they do not
need to cover all possibilities. An “else” guard can be added to
provide a default branch when no other guards are met.

 History Connector: A history connector is placed in an “or”
state to remember its last active sub state. When the “or” state is re-
entered, it automatically returns to that sub state. The transition
coming out of the history connector is the default transition taken
when there is no history.

 Termination Connector: A termination connector destroys the
block.

 Junction Connector: A junction connector helps manage
diagram complexity by combining several incoming transitions into a
single outgoing transition.

 Diagram Connector: A diagram connector helps manage
diagram complexity by allowing jumping to different sections of the
statechart diagram to avoid line crossing.

 EnterExit Point: A connector that links transitions across
statechart diagrams.

 Send Action State: Graphical representation of a send signal
action.

Harmony for SE Deskbook | 126 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Appendix

Statechart Diagram

Guidelines and Drawing Conventions

• If possible, Statechart diagrams should flow vertically from top to
bottom. The initial state should be located near the top of the
diagram and any termination connectors should be located near
the bottom of the diagram.

• Typically, all states should have at least one entry transition and at
least one exit transition. A “dead end” state should be a very rare
thing!

• Avoid nesting of states beyond 3 or 4 levels. Ensure complex
nesting is simplified with sub state diagrams.

• All transition lines should be rectilinear or straight. Transitions
should not cross each other or cross through states.

• Labels should be positioned on the left-hand side of the arrow
direction.

• For readability reasons, use Mealy syntax (event [condition]/action
on transition) wherever possible. Always place the action on a
transition on a new line from the event and guard.

• Moore syntax (= action on entry, reaction in state) should be
avoided unless necessary. This feature allows a block to react to
events within a state without actually leaving that state via a
transition. Exceptions to this rule include

• protocol state machines for actors that respond to an input
with a specific output,

• message routing state machines that forward requests from
one subsystem to another subsystem, and

• actions in action states (ref Appendix A4).

Never use “action on exit”.

• Diagram Connectors should only be used when the readability of a
statechart diagram is disturbed by a direct transition.

• It is essential that the EnterExit Points connectors have meaningful
names and the two charts that are connected can be shown side
by side, with the connecting transition being easily identifiable.
Using similar positions of the connector on each chart may facilitate
this.

Uc2ControlExitCtrl

WaitForExitRequest

ProcessingSecurityCardData

Fail3Times

reqReadSecurityCard/

readSecurityCard();

UnlockingAndLockingAccessPoint

[CardStatus=="Valid"]/

logExitData();

reqProcessAlert("Exit Failure") to pAdmin

A

A

evAccessPointLocked

WaitForResetAlarm
reqResetAlarm/

resetAlarm();

ExitControl

reqProcessAlert("TimeLimitViolation") to pAdmin

CheckingForTimelimitViolations

checkForTimeLimitViolations(TimeLimitFlag);

[TimeLimitFlag==1]/TimeLimitFlag=0;

tm(t_Update)

TimeLimitMonitor

reqReadSecurityCard/

readSecurityCard();

[CardStatus=="Valid"]/

logExitData();

evAccessPointLockedreqResetAlarm/

resetAlarm();

[TimeLimitFlag==1]/TimeLimitFlag=0;

tm(t_Update)

ProcessingSecurityCardData

ValidatingSecurityCardData

validateSecurityCard(CardStatus);...displayCardStatus(CardStatus);

WaitForEntryRequest

reqReadSecurityCard/
readSecurityCard();

[else]

SecCardFailure

flagSecurityCardFailure(ScFailCount);

[CardStatus=="Not Valid"]

Fail3Times
[ScFailCount>3]

/ScFailCount=0 /ScFailCount=0

reqReadSecurityCard/
readSecurityCard();

[else]

[CardStatus=="Not Valid"]

[ScFailCount>3]

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 127

Appendix

Naming Conventions

• State names should be verbs and indicate the current mode or
condition of the block. Typically names are in the present tense.
Names must be unique among sibling states and should never be
the same as the name of a block or an event.

• Avoid names like “idle” or “wait”.

A1.8 Profiles

A profile extends the UML/SysML with domain-specific tags and
stereotypes. It also allows certain tool-specific properties to be
overridden to support modeling in a specific domain. These
customizations can be applied to the entire model or to specific model
elements.

Exemplarily Tab. A1-2 shows the properties of a project-specific profile
that supports the modeling guidelines outlined in the previous
sections. Tab. A1-1 depicts the definition of element tags that was
added to the profile in order to support the documentation.

Tab. A1-1 Project-Specific Tags Defined in a Profile

Tab. A1-2 Project-Specific Properties Defined in a Profile

Tag Applicable To Type

PreCondition

Use Case

Sequence Diagram

Primitive Operation

String

PostCondition

Use Case

Sequence Diagram

Primitive Operation

String

Constraint

Use Case

Sequence Diagram

Primitive Operation

String

Property Value

Activity_diagram>Transition>line_style rectilinear_arrows

Activity_diagram>DefaultTransition>line_style straight_arrows

Statechart>Transition>line_style rectilinear_arrows

Statechart>DefaultTransition>line_style straight_arrows

Statechart>CompState>ShowCompName false

SequenceDiagram>General>HorizontalMessageType Event

SequenceDiagram>General>SelfMessageType PrimitiveOperation

SequenceDiagram>General>ShowwAnimStateMark false

ObjectModelGe>Actor>ShowName Name_only

ObjectModelGe>Class>ShowName Name_only

ObjectModelGe>Object>ShowName Name_only

ObjectModelGe>Inheritance>line_style rectilinear_arrows

ObjectModelGe>Depends>line_style rectilinear_arrows

ObjectModelGe>Class>ShowPorts false

ObjectModelGe>Class>ShowPortsInterfaces false

UseCaseGe>Actor>ShowName Name_only

UseCaseGe>UseCase>ShowName Name_only

Harmony for SE Deskbook | 128 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Appendix

A2 Deriving a Statechart Diagram

This guideline describes how to derive state-based behavior from the
information captured in an activity diagram and associated sequence
diagrams. The steps are detailed using as an example the simplified
use case Uc2ControlExit.

Fig. A2-1 depicts the black-box activity diagram of the use case
Uc2Control Exit. It describes the functional flow of the use case by
decomposing the flow of execution into a set of actions joined by
transitions and condition connectors.

Fig. A2-1 Use Case Uc2_ControlExit Black-Box Activity Diagram

Fig. A2-2 shows the black-box sequence diagram that was generated
from the black-box activity diagram by means of the Rhapsody SE
Toolkit feature Create New Scenario From Activity Diagram. The
information from the activity diagram and its associated sequence
diagrams will be used to identify and capture the state-based system
behavior in a statechart diagram.

Fig. A2-2 Use Case Scenario Sc1 derived from BB-Activity Diagram

logExitData

validateSecurityCard

alarm

[CardStatus==Valid][CardStatus==Valid]

displayCardStatus

readSecurityCard

User

[ScFailCount<3][ScFailCount<3]

flagSecurityCardFailure

[else][else]

resetAlarm

Admin

reqUnlockAccessPoint

«MessageAction»

AccessPoint

reqLockAccessPoint

«MessageAction»

AccessPoint

evAccessPointLocked

«MessageAction»

AccessPoint

evAccessPointUnlocked

«MessageAction»

AccessPoint

[Timeout Unlocked][Timeout Unlocked]

reqProcessAlert

«MessageAction»

Admin

[else][else]

Uc2ControlExitBBView

[CardStatus=="Valid"]

[CardStatus=="Not Valid"]alt

[CardStatus=="Valid"]

[CardStatus=="Not Valid"]alt

[CardStatus=="Valid"]

[CardStatus=="Not Valid"]alt

:AccessPoint:Admin:Uc_Uc2ControlExit

ScFailCount==3

readSecurityCard()

validateSecurityCard(CardStatus)

displayCardStatus(CardStatus)

flagSecurityCardFailure(ScFailCount)

reqProcessAlert(AlertType)

alarm()

reqResetAlarm()

resetAlarm()

logExitData()

reqUnlockAccessPoint()

evAccessPointUnlocked()

reqLockAccessPoint()

evAccessPointLocked()

t_Unlocked

readSecurityCard()

validateSecurityCard(CardStatus)

displayCardStatus(CardStatus)

flagSecurityCardFailure(ScFailCount)

reqProcessAlert(AlertType)

alarm()

reqResetAlarm()

resetAlarm()

logExitData()

reqUnlockAccessPoint()

evAccessPointUnlocked()

reqLockAccessPoint()

evAccessPointLocked()

t_Unlocked

reqReadSecurityCard()

:User

reqReadSecurityCard()

BB_Uc2Sc1

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 129

Appendix

Step1: Identify Wait States and Action States

Step 1.1: Identify Wait States

In a Wait State an object waits for an event to happen. It consumes
time while waiting for the event.

In the use case black-box activity diagram identify actions with IN actor
pins. In the use case black-box sequence diagrams (Fig. A2-2) identify
the messages (receptions) that trigger the selected actions. For each
of the identified actions create in the statechart diagram a wait state
named WaitFor<ReceptionName>.
 In cases where the use case black-box sequence diagram shows a
timeout event (Fig. A2-2: t_Unlocked)), create in the statechart
diagram a wait state with a name that describes the actual system
status (Fig. A2-3: AccessPointUnlocked).

Fig. A2-3 Wait States of Uc2_ControlExit

Step 1.2: Identify Action States

An action state is a state whose purpose is to execute an entry action,
after which it takes a completion transition to another state. It is a kind
of dummy state that is useful for organizing state machines into logical
structures.

In the use case black-box activity diagram identify actions with multiple
outgoing completions with guard conditions. For each of these actions
create in the statechart diagram an action state with the name of the
action (naming convention: <ActionName>ing) and allocate the
relevant action to it using MOORE syntax.
NOTE: Besides the output-relevant action, an action-state may also
have additional context-related actions allocated to it (Fig. A2-4: action
state ValidatingSecurityCard).

Fig. A2-4 Action States of Uc2 ControlExit

Harmony for SE Deskbook | 130 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Appendix

Step 2: Connect States

Step 2.1: Identify the initial state

Mark the initial state with a Default Connector. If attributes need to be
initialized (e.g. ScFailCount in Fig. A2-5), add respective actions to the
default connector.

Fig. A2-5 Flat Statechart of Uc2_ControlExit
(Sequence for CardStatus ==“Pass”)

Step 2.2: Identify transitions, triggering events,

and associated actions

The transitions between the states and associated triggering events –
including guarded condition(s) - are identified through analysis of the
captured use case sequence diagrams.

Select a use case scenario. Replicate the scenario in the statechart
diagram:
Start from the initial state. In the sequence diagram identify the event
and – if needed – guarded condition(s) that trigger a transition and the
associated action(s). In the statechart diagram identify the target
state. Connect the two states. Label the transition following MEALEY
syntax: Event [Condition] / Action. If the target state is an action
state, add to the transition label only those actions that are not
allocated to the state. Proceed in the sequence diagram and repeat
the outlined connecting steps in the statechart diagram.

Repeat the replication of scenarios in the statechart for all captured
scenarios.

Step 2.3: Execute the Statechart

Verify the correctness of the captured state-based behavior through
model execution using the black-box use case scenarios as the basis
for respective stimuli.

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 131

Appendix

Step 3: Structure the Statechart hierarchically

Step 3.1: Identify state hierarchies

Once the flat statechart is verified, look for ways to structure it
hierarchically. Identify states that can be aggregated. Grouping
criteria could be e.g.

• System modes
• System phases or
• Reuse of state patterns

Also look for situations where the aggregation of state transitions
simplifies the statechart. Inspection of the flat statechart Error!
Reference source not found. reveals that

- ValidatingSecurityCard,
- FlagingSecurityCardFailure, and
- WaitFor_reqReadSecurityCard in the case of a card failure

can be considered sub-states of a composite state called
ProcessingSecurityCard (Fig. A2-6). As ScFailCount is a local
attribute, its initialization is added to the default entry of the composite
state. Furthermore, the substates FlagingSecurityCardFailure and
WaitFor_reqReadSecurityCard can be aggregated in the composite
state ValidationFail, thus denoting the fail mode within the
ProcessingSecurityCard state.

Fig. A2-6 Composite State ProcessingCardData

Note the different transitions out of the composite state. In the case of
CardStatus==”Pass” the triggering condition and associated action is
captured in the top-level statechart (Fig. A2-5) as a high-level interrupt.
In the case of a third-time failure, the respective triggering condition
and associated action is captured within the ProcessingSecurityCard
state and linked to the top-level statechart via an EnterExit Point
(Fail3Times).

Fig. A2-7 Composite State UnlockingAndLockingAccessPoint

States in the flat statechart Fig. A2-5, that relate to the access point
control can be aggregated into the composite state
UnlockingAndLockingAccessPoint, as shown in Fig. A2-7. This state
includes the messages sent to the access point.
Furthermore, the states WaitFor_evAccessPointUnlocked and
WaitFor_evAccessPointLocked can be merged to one wait state called
WaitForAccessPointFeedback. The exit out of the composite state is
captured in the top-level statechart.

Harmony for SE Deskbook | 132 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Appendix

Fig. A2-8 shows the final structure of the top-level statechart of the use
case Uc2ControlExit.

Fig. A2-8 Top-Level Statechart of Uc2ControlExit

Step 3.2: Execute the Statechart

Verify the correctness of the captured state-based behavior through
model execution using the black-box use case scenarios as the basis
for respective stimuli.

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 133

Appendix

A3 Usage of Activity Diagram Information in the SE Workflow

Activity Diagram:

The Activity Diagram is similar to the classic flow
chart. It describes a workflow or algorithm by
decomposing the flow of execution into a set of
actions and sub activities joined by transitions and
various connectors. These actions and sub-
activities are called activity nodes. An activity
diagram can be a simple linear sequence of actions
or it can be a complex series of parallel actions with
conditional branching and concurrency.

The example shows the sequence of actions
associated with the alignment of a gun to the Line of
Sight (LoS).

Sequence Diagram:

In Harmony for Systems Engineering an action is
the equivalent of an operation.
Using the SE-Toolkit feature Create New Scenario
from Activity Diagram, the sequence of actions is
translated into a respective sequence of (auto
realized) operations in a Sequence Diagram.

Statechart Diagram:

In the Statechart Diagram, the sequence of actions /
operations typically is associated with a state
transition. Notation: Event[Condition] / Action(s).

In the example the triggering event is the default
entry into the state GunAligned.

Reuse of the UML/SyML Activity Node Information

Harmony for SE Deskbook | 134 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Appendix

Activity Diagram:

Harmony for Systems Engineering uses a SysML
activity pin stereotyped <<ActorPin>> to visualize
the interaction of an action/operation with the
environment. The name of the pin is the name of
the associated actor, the arrow in the pin shows the
direction of the link (input and/or output)

In the example the action calculateLosCmd was
added. This action will be initiated by the gunner.
The triggering event will be defined in the Sequence
Diagram (below).

Sequence Diagram:

The example shows the Sequence Diagram
generated by means of the SE-Toolkit feature
Create New Scenario from Activity Diagram. Based
on the information from the pin and the requested
operation, this feature creates an auto realized
message (reqCalculateLosCmd) from the gunner.

Statechart Diagram:

Activity nodes with input ActorPin(s) are translated
into Wait States named WaitForW

NOTE: It is highly recommended to standardize the
naming of Wait States.

Typically, the triggering event initiates a state
transition.
Notation: Triggering Event / Operation(s).

Reuse of Activity Node with ActorPins Information (cont’d)

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 135

Appendix

Reuse of Message Action Information (cont’d)

Activity Diagram:

Harmony for Systems Engineering uses
UML/SysML actions stereotyped
<<MessageAction>> to describe in an Activity
Diagram incoming messages that trigger a system
mode switch, provide requested data or send
messages. If the message is related to an actor,
the sender / recipient of the message needs to be
denoted by a respective ActorPin.

Sequence Diagram:

The example shows the Sequence Diagram
created from the Activity Diagram above by
means of the SE-Toolkit feature Create New
Scenario from Activity Diagram .

NOTE: The Interaction Operators and Operant
Separators were added manually.

Statechart Diagram:

Message Actions with input ActorPins are
translated into Wait States named WaitForW
Typically, the triggering event initiates a system
mode change.

In the example the initial state was considered a
WaitForPalmsEngaged state. Once the gunner
engaged his palms, he was in control of the
system.

Harmony for SE Deskbook | 136 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Appendix

A6 Rhapsody Action Language

This section provides a brief introduction to the action language applied
in the Rhapsody tool.

Basic Syntax

The language is case sensitive. That is, “evmove” is different from
“evMove”. Each statement must end with a semi-colon.
All names must start with a letter and cannot contain spaces. Special
characters are not permitted in names, except for underscores (_).
However, a name should never start with an underscore.
The following words are reserved and should not be used for names:
asm, auto, break, case, catch, char, class, const, continue, default,
delete, do, double, else, enum, extern, float, for, friend, GEN, goto, id,
if, inline, int, IS_IN, IS_PORT, long, new, operator, OPORT,
OUT_PORT, params, private, protected, public, register, return, short,
signed, sizeof, static, struct, switch, template, this, throw, try, typedef,
union, unsigned, virtual, void, volatile, while.

Assignment and Arithmetic Operators

Printing

The “cout” operator prints to the screen. Elements to be printed are
separated by the “<<” operator. Text strings are surrounded by double
quotes. Attributes are referenced using their names. The “endl”
operator prints a carriage return. So, to print out the current value of
X, use the following command:

cout << “The value of X is “ << X << endl;

If the current value of X is 5, this statement prints the following
message on the screen:

The value of X is 5

Comparison Operators

X=1 (Sets X equal to 1)

X=Y (Sets X equal to Y)

X=X+5 (Adds 5 to X)

X=X-3 (Subtracts 3 from X)

X=X*4 (Multiplies X by 4)

X=X/2 (Divides X by 2)

X=X%5 (Sets X to the remainder of X divided by 5)

X++ (Increments X by 1)

X-- (Decrements X by 1)

X==5 (X equal to 5)

X!=5 (X not equal to 5)

X<3 (X less than 3)

X<=3 (X less than or equal to 3)

X>4 (X greater than 4)

X>=4 (X greater than or equal to 4)

X>2 && X<7 (X greater than 2 and X less than 7

X<2 || X==7 (X less than 2 or X equal to 7)

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 137

Appendix

Conditional Statements

Conditional statements begin with the keyword “if” followed by a
conditional expression in parenthesis, followed by the statement to
execute if the condition evaluates to true. You can optionally add the
“else” keyword to execute a statement if the condition evaluates to
false. The “else” clause can contain another nested “if” statement as
well. For example:

if (X<=10)
 X++;
else
 X=0;

Multiple statements can be grouped together by placing them in curly
braces.

if (X<=10)
{
 X++;
 cout << “The value of X is ” << X << endl;
}
else
{
 X=0;
 cout << “Finished” << endl;
}

Incremental Looping Statements

Incremental looping is accomplished using the “for” statement. It
holds three sections separated by semicolons to specify: 1) an
initialization statement, 2) a conditional expression, and 3) an
increment statement. For example, to iteratively set the value of X
from 0 to 10 while printing out its value:

 for (X=0; X<=10; X++)
 cout << X << endl;

Conditional Looping Statements

The “while” statement is used for conditional looping. This statement
has a single conditional expression and iterates so long as it evaluates
to true. The previous example could be implemented using a “while”
statement as follows:

 X=0;
 while(X<=10)
 {
 cout << X << endl;
 X++;
 }

Invoking Operations

To invoke an operation on a block, use the operation name followed
by parenthesis. For example, to invoke the “go” operation:

go();

If an operation takes parameters, place them in a comma-separated
list. For example, to invoke the “min” operation with two parameters:

min(X,Y);

Generating Events

The “OUT_PORT” and “GEN” keywords are used to generate events
through ports. For example, to send an event named “evStart” out the
port named “p2”, issue the following statement:

OUT_PORT(p2)->GEN(evStart);

To generate an event with parameters, place them into a comma-
separated list. For example, to generate an event named “evMove”
with two parameters for velocity and direction:

OUT_PORT(p2)->GEN(evMove(10,2));

NOTE: The “OPORT” keyword can be used in place of “OUT_PORT”.

Harmony for SE Deskbook | 138 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Appendix

Referring to Event Parameters in Transitions

The “params” keyword followed by the “->” operator is used to
reference the parameters of the event that caused the current
transition. For example, if an event named “evMove” has a parameter
named “velocity”, that parameter can be referenced using “params-
>velocity”. This syntax can also be embedded in statements within the
action on the transition. For example:

if (params->velocity <= 5)

Testing the Port on which an Event Arrives

The “IS_PORT” keyword is used to test whether the event that caused
the current transition arrived through a specific port. For example:

if (IS_PORT(p2))S

Testing the State of a State Machine

The “IS_IN” keyword is used to test whether a state machine is in a
specific state. For example, to test whether the state machine of a
block is in a state called “Accelerating”:

if (IS_IN(Accelerating))

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 139

Appendix

A5 Change Request-driven System Design Approach

The chance for systems engineers to be involved in the design of a completely new system is rare. Mostly, systems engineers have to deal with
modifications or extensions of an existing (legacy) system. Typically, the changes are based on requirements specified in form of textual Change
Requests (CR). Although accompanied by descriptive documents such as Concepts of Operations (CONOPS), further analysis is needed to assess
the impact of change requests on the existing system architecture.

This section describes by means of a generic example, a model-based change request-driven system design approach aimed at the early validation
of customer requirements by means of executable models.

Essentially, the outlined workflow follows the MbSE workflow documented in the previous paragraphs. The only essential difference is the hand-off to
the subsequent subsystem development teams, i.e. to HW, SW and Test. As in this case the executable Change Request (CR) System Architecture
Model only defines the allocation of change request related functional/non-functional requirements to the legacy system architecture Configuration
Items (CI), the resulting impact on respective CIs has to be elaborated by the Integrate Product Team (IPT) as a follow-up activity.

The benefits of the Change Request-driven System Design approach are:

- Improved understanding of customer requirements up-front in the system design and
- Support of system impact analysis in order to allow early submission of Change Proposals.

Requirements Analysis

The requirements of the generic change request are grouped in two
use cases (CR_Uc1, CR_Uc2). Fig.A5-1 depicts the resulting use
case diagram.

NOTE: The association between the legacy system CIs and the use
case have to be unidirectional.

Fig.A5-1 Use Case Diagram of the Change Request Case Study

Functional Analysis

The functional flow of each use case is captured in a black-box activity
diagram (Fig.A5-2).

NOTE: The ”use case story” must be self-contained. It may include
functionality that is implemented in the legacy system. In the later
design phase (ref. “Hand-off to the Integrated Product Team”)
respective redundancies will be filtered out.

Following the functional analysis workflow, use case black-box
scenarios are derived from the respective use case black-box activity
diagram. These scenarios are the basis from which use case block
ports and interfaces were defined. Eventually, based on the
information from the activity diagram and the sequence diagrams, the
state-based behavior of the use case block is captured in a statechart
diagram. Each use case model is then verified through model
execution.

UCD_ChangeRequest

A1A1

A2A2

ChangeRequest

CR_Uc2

CR_Uc1

CI11_LegacyCI11_Legacy

CI22_LegacyCI22_Legacy

Harmony for SE Deskbook | 140 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Appendix

Fig.A5-2 Black-Box Activity Diagrams of Use Cases
CR_Uc1 and CR_Uc2

Architectural Analysis

The objective of the Architectural Analysis phase – also referred to as
the Trade Study phase – is to elaborate an architectural concept that
best satisfies the CR related set of functional and performance
requirements. In collaboration with the Integrated Product Team (IPT),
different architectural concepts are evaluated based upon a set of
criteria that are weighted according to their relative importance. It is
beyond the scope of this section to go into details of the trade study.

The lowest level of architectural decomposition to be captured in the
CR system architecture model is the node level – also referred to as
configuration item (CI) level (Fig.A5-3).

NOTE: The CR system structure captures only the “delta”
architecture, i.e. those CIs that are involved in the design process
either as actors in the use cases (CI11, CI22) or as a location for the
change request (CI211). CI3 was added to the legacy system
architecture as an additional component.

At the lowest level a CI consists of a legacy (black-box) part.
Optionally, this CI will contain the allocated change request related
functional/non-functional requirements.

Fig.A5-3 Case Study: CR System Architecture

Architectural Design

AD_CR_Uc1BlackBox

AD_CR_Uc2BlackBox

SuD

CI1 CI2 CI3

CI11 CI21 CI22

CI211_Legacy

CI211

CI11_Legacy CI22_Legacy

CI211_CR

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 141

Appendix

Fig.A5-4 shows the workflow and the associated artifacts in the CR
related Architectural Design phase. Two types of models are created
in this phase:

- the Realized CR Use Case Model(s) and
- the CR System Architecture Model.

The Realized CR Use Case Model is the white-box view of the use
case model that was created in the previous Functional Analysis
phase. The CR System Architecture Model is the aggregate of all
Realized CR Use Case Models.

Fig.A5-5 and Fig.A5-6 show the created SysML artifacts in the case
study.

NOTE: For readability reasons, the names of the delegation ports are
not shown in the IBDs.

Once the correctness and completeness of the realized CR use case
models are verified through model execution, they are merged in the
common CR System Architecture Model. Fig.A5-7 shows the BDD
and IBD of this model. The collaboration of the different realized CR
use case models is verified through model execution on the basis of
the previously captured UC white-box sequence diagrams.

Fig.A5-4 Workflow in the Architectural Design Phase

CR Architectural Design

[Next Use Case] [else]

Merge

Realized CR UC Models

Verify

CR System Architecture Model

Realize CR Use Case Model

Define
CI Blocks Ports and Interfaces

Verify
Realized CR UC Model

Define
CI Blocks State-Based Behavior

Allocate/Link
Non-Functional Requirements

Decompose UC BlockDecompose UC Block

Allocate
System-Level Operations to CIs

Derive
UC White-Box Sequence Diagrams

Realized CR UC

Structure Diagram

(BDD,IBD)

Realized CR UC

White-Box AD

Realized CR UC

White-Box SDs

Realized CR UC

Statechart Diagrams

CR Architectural Design

[Next Use Case] [else]

Merge

Realized CR UC Models

Verify

CR System Architecture Model

[Next Use Case] [else]

Merge

Realized CR UC Models

Verify

CR System Architecture Model

Realize CR Use Case Model

Define
CI Blocks Ports and Interfaces

Verify
Realized CR UC Model

Define
CI Blocks State-Based Behavior

Allocate/Link
Non-Functional Requirements

Decompose UC BlockDecompose UC Block

Allocate
System-Level Operations to CIs

Derive
UC White-Box Sequence Diagrams

Realized CR UC

Structure Diagram

(BDD,IBD)

Realized CR UC

White-Box AD

Realized CR UC

White-Box SDs

Realized CR UC

Statechart Diagrams

Harmony for SE Deskbook | 142 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Appendix

Fig.A5-5 Realized Use Case Model CR_Uc1

IBD_CR_Uc1

AD_CR_Uc1WhiteBox

BDD_CR_Uc1

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 143

Appendix

Fig.A5-6 Realized Use Case Model CR_Uc2

IBD_CR_Uc2

AD_CR_Uc2WhiteBox

BDD_CR_Uc2

Harmony for SE Deskbook | 144 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Appendix

Fig.A5-7 CR System Architecture Model

BDD_CR_SystemArchitecture

IBD_CR_SystemArchitecture

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 145

Appendix

A commonly used artifact for the documentation of the communication
in a network is the N-squared (N

2
) chart. In an N

2
chart, the basic

nodes of communication are located on the diagonal, resulting in an
NxN matrix for a set of N nodes. For a given node, all outputs (SysML
required interfaces) are located in the row of that node and inputs
(SysML provided interfaces) are in the column of that node. Fig.A5-8

depicts the N
2

chart of the CR system architecture elaborated in the
case study.

NOTE: In the N

2
 chart the SuD_CR colum/row describes the logical

system-level interfaces.

Fig.A5-8 N
2
 Chart of the Case Study CR System Architecture

Hand-off to the Integrated Product Team

In this case study, the level of the architectural decomposition and
associated requirements allocation is the CI-level. This constraint
defines the hand-off to the subsequent hardware/software
development. As outlined in the previous paragraphs, each CI at the
lowest level of the CR System Architecture Model consists of a black-
box legacy part and (optionally) of a change request related part which
contains the allocated functional and non-functional requirements.
“Harmonizing” the two parts and partitioning them into HWCIs and/or
CSCIs are considered tasks to be performed by the Integrate Product
Team (IPT).

This chapter details the hand-off artifacts to the IPT. Essentially, the
hand-off addresses three types of changes to a legacy system
architecture. These three types are elaborated here:

Add additional Ports/Interfaces to the Legacy CI

Fig.A5-9 depicts an example from the case study described in the
previous paragraph. In this case, the legacy CIs just provided required
information. No changes with regard to the CI functionality are
involved.

Fig.A5-9 Adding additional Ports/Interface(s) to a Legacy CI

Harmony for SE Deskbook | 146 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Appendix

Add new Functionality and Port/Interfaces to the Legacy CI

Fig.A5-10 shows an example from the case study described in the
previous paragraph. In this case, a subset of requirements that were
verified/validated through respective use case models is allocated to
the CI in use case-related blocks.

Fig.A5-10 Adding New Functionality and associated
Ports/Interfaces to a Legacy CI

These CR blocks then are linked to CIs of the CR system architecture
via respective ports and interfaces. As mentioned in the Functional
Analysis paragraph, some of the identified operations in these blocks
may address functionality already implemented in the black-box part of
the CI. It will be the task of the IPT to filter-out respective
redundancies.

Add a new CI to the Legacy System Architecture

Fig.A5-11 depicts an example from the case study described in the
previous chapter. In this case, a subset of requirements that were
verified/validated through respective use case models, is allocated to
the new CI in use case-related blocks. These blocks then are linked to
CIs of the CR system architecture via respective ports and interfaces

Fig.A5-11 Adding a new CI to the Legacy System Architecture

In any of these cases, the individual CI hand-off will be composed of:

• The baselined executable CI model

• The definition of CI-allocated operations, including links to the
associated system functional and performance requirements.
The allocated operations may be grouped in separate system use
case related blocks.

• The definition of CI ports and logical interfaces.
If a CI is sub-structured into use case related CR blocks,
respective internal ports and associated interfaces are included.

• The definition of CI behavior, captured in a statechart diagram.
If a CI is sub-structured into use case related CR blocks, the state-
based behavior is split accordingly.

• Test scenarios – captured in sequence diagrams - derived from
system-level (i.e. white-box) use case scenarios, and

• CI-allocated non-functional requirements

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 147

Appendix

A6 Using Model-Based Testing for the Verification of Hand-Off Models

Overview of the Rhapsody TestConductor and
Rhapsody Automatic Test Generation

The Rational Rhapsody TestConductor Add-On (TC) solution is a
SysML/UML-compliant model-based testing environment for real-time
embedded systems and software. By analyzing a model, TC can help
build the test context automatically, and test cases can be described
as sequence diagrams. TC automatically converts them into
executable test procedures where the “inputs” to the system under test
are driven from the test case scenario and so are the resulting
messages that need to be observed. Hence, the verification steps to
create test architectures, to specify executable test cases, and to
execute the test cases is largely automated. Furthermore, since
model-based testing enables to continuously test against
requirements, this solution can aid in reducing specification time and
costs while helping to improve system quality.

The Rational Rhapsody Automatic Test Generation Add-On (ATG)
solution offers a superior capability: by analyzing a model, ATG
automatically generates test scenarios that drive the model through
many paths with a goal of helping to maximize the coverage of the
model. The automatically generated test scenarios are in the form of
sequence diagrams similar to the ones a human tester would specify
with the Rhapsody sequence diagram editor. Hence, ATG generated
the test cases that can be executed using TC.

In a model-driven system development environment, the key artifact of
the hand-off from systems engineering to subsystem development is
executable models. The Harmony/SE Deskbook recommends an
interactive verification using model execution, including model
animation, and a visual comparison of the “as-is” behavior regarding
the expected behavior. This approach pays-off only if the costly
incremental and iterative verification of the hand-off model can be
highly automated. Integration test scenarios shall be part of each
composed subsystem hand-off package. ATG can be applied to
automatically generate such integration test scenarios. Then, TC can
be used to verify a developed subsystem against the requirements

and to verify, that changes in the executable model do not lead to
regressions in the model.

The following sections provide an overview about how TC and ATG
can be applied for the verification of hand-off models using, as an
example, the SecSysController subsystem hand-off model elaborated
in Section 5 of the Deskbook. A more detailed step-by-step
description can be found in the video “TestConductor Tutorial for the
Verification of Harmony/SE Hand-off Models” [5].

ATG and TC Harmony/SE Workflow

Fig.A6-1 outlines the main workflow. The goal is to generate and
execute tests in order to achieve a highly automated verification of the
hand-off model.

Several activities have to be performed within this verification
workflow:

• a hand-off model is analyzed and test scenarios are generated

with ATG

• the generated test scenarios have to be manually reviewed to

verify correctness regarding the initial requirements

• test scenarios are automatically converted into test cases ready

for execution

• test cases can be executed with TC, and

• additional test cases can be added to the test suite to enhance it

Harmony for SE Deskbook | 148 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Appendix

Fig.A6-1 ATG and TC Workflow

Generate Test Scenarios with ATG

ATG is applied on the SecSysController hand-off model. Since it is an
executable model of the given requirements, it is the perfect model to
derive test cases for further testing activities. With ATG, the objective
is to generate a set of scenarios including inputs to the model and
expected outputs from the model that sufficiently cover the whole
SecSysController behavior. The SecSysController block is selected to
be the System Under Test (SUT). TC automatically creates a test
architecture including the needed test actors connected to the SUT, as
shown in Fig.A6-2.

Fig.A6-2 TestArchitecture for SecSysController

The created test architecture contains an instance of the block
SecSysController, which is stereotyped as SUT. It also contains six
auto-generated test actors which are connected to the six ports of the
SecSysController, respectively. Leveraging from this test architecture,
ATG automatically generates the test scenarios. ATG triggers the test
actors to automatically send input messages to the SUT via the ports
and records these messages. Likewise, the observable reactions of
the SUT (i.e. messages from the SUT to the test actors via the ports
are recorded.

TCon_SecSysController
«TestContext»

itsSecSysController

1 «SUT,Block»

pCardReaderExit

pAdmin

pAccessPoint

pFingerprintScanner

pCardReaderEntry

pCamera

itsTC_for_Camera1

pSecSysController

itsTC_for_CardReaderEntry1

pSecSysController

itsTC_for_FingerprintScanner1

pSecSysController

itsTC_for_AccessPoint1

pSecSysController

itsTC_for_Admin1

pSecSysController

itsTC_for_CardReaderExit1

pSecSysController

Enhance
TestConductor Test Suite

Execute
TestConductor Test Suite

Create
TestConductor Test Suite

Generate
Test Scenarios with ATG

Review
Generated Scenarios

Enhance
TestConductor Test Suite

Enhance
TestConductor Test Suite

Execute
TestConductor Test Suite

Execute
TestConductor Test Suite

Create
TestConductor Test Suite

Create
TestConductor Test Suite

Generate
Test Scenarios with ATG

Generate
Test Scenarios with ATG

Review
Generated Scenarios

Review
Generated Scenarios

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 149

Appendix

As described in the Deskbook, the SecSysController block is an
executable model of the requirements for the SecSysController
subsystem of the Security System case study. The model elements
have an explicit connection to the requirements through a <<satisfy>>
dependency. Verification of the subsystem model against the
subsystem requirements can be performed with integration test
scenarios. The set of integration test scenarios shall be sufficiently rich
enough to execute all parts of the executable model in order to ensure
a proper verification of the model. While ATG generates test
scenarios, it also measures the achieved model element coverage (
i.e. state coverage, transition coverage, and operation coverage).
ATG could, for example, generate a test scenario that traverses the
states and transitions of the main SecSysController statechart, as
illustrated with green color in Fig.A6-3.

Fig.A6-3 Sample Test Scenario

Obviously, more than one test scenario is necessary to achieve
sufficient coverage of the model. ATG terminates the automatic test
scenario generation when all model elements are traversed. Fig.A6-4
summarizes the information about the achieved SecSysController
model coverage status after ATG finishes the scenario generation.

Fig.A6-4 ATG Model Coverage Overview

The SecSysController model contains 34 states, 50 transitions and 8
operations, in total 92 model elements. As shown in Fig.A6-4, the 92
model elements are covered with test scenarios. ATG can cover
several states and transitions with one test scenario, as shown in the
statechart Fig.A6-3. Hence, ATG computes a minimal set of
necessary test scenarios, and adds them to the hand-off model. In this
case, just 14 test scenarios were needed to achieve 100% model
coverage.

Review Generated Scenarios

It is important to review the generated test scenarios in order to verify
their correctness against the initial requirements. Hence, the review of
the ATG generated scenarios can be considered to be another cross-
check that verifies that the hand-off model indeed meets its
requirements. If a scenario is approved, it can be moved into a new
folder to collect the approved scenarios. An example of a reviewed
and approved sample scenario can be seen in Fig.A6-5.

Harmony for SE Deskbook | 150 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Appendix

The lifelines in this test scenario represent (from left to right) the test
context, the SUT, and four of the six test actors of the
SecSysController which are involved in this particular test scenario:
Admin, FingerprintScanner, CardReaderEntry, and Camera.

Additional information not visible in this scenario view: 1 operation, 7
states, and 4 transitions, are covered with this single test scenario.

Create TestConductor Test Suite

The reviewed and approved scenarios are used to create executable
test cases for TC. This activity is fully automated. Such test cases can
be used with TC to verify the hand-off model, especially after changes,
enhancements, or fixes, have been made. A Test Case is a model
element that is visible in the browser underneath the Test Context.
Each Test Case references a Test Scenario which specifies the details
of a test case.

Fig.A6-5 Reviewed and Approved Test Scenario Generated by ATG

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 151

Appendix

Fig.A6-6 TC Test Case in the Browser Referencing a
ATG Test Scenario

For each approved test scenario, TC creates a test case. 14 TC test
cases are created for the SecSysController block and added to the
test architecture TCon_SecSysController. As part of the hand-off
package for SecSysController, they can be handed-off to subsystem
development.

Execute and Review TestConductor Test Suite

Single or multiple test cases can be
executed automatically in order to
verify that the black-box behavior
of the hand-off model is as
expected, even after changes and
enhancements have been made.
The generated test execution
report contains information with
passed or failed verdicts,
respectively.

 Fig.A6-7 Test Case Execution with

TC Leads to Passed Results

In addition, TC can measure model coverage during test case
execution and generate a report. As explained earlier in this section,
one single test case may cover many states, transitions, and
operations. Accumulated model element coverage is computed when
executing several test cases.

Fig.A6-8 shows an excerpt of the achieved
model element coverage of the
SecSysController model. It visualizes in
green color the states and transitions that
have been executed. Red color would
indicate that a model element is not executed
by the test suite. In our example, everything
is green because all model elements are
covered.

Fig.A6-8 Model Coverage Report after
 Test Case Execution

Harmony for SE Deskbook | 152 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Appendix

As mentioned earlier, Harmony/SE recommends explicitly linking
model elements to the requirements through <<satisfy>>
dependencies. As ATG and TC know the relation between generated
test cases and model elements, the coverage of the requirements
associated with the generated tests can be reported.

Fig.A6-9 shows an excerpt of such a report. On the left side the
generated test cases are listed. The top line shows the requirements.
The entries in the cells of the table indicate wheather a test case
contributes to the verification of a requirement. For instance, test case
ATG_TestCase_4 does not contribute to the verification of
requirement Three Attempts On Employee ID Entry. But it contributes
to the verification of requirements Three Attempts On Biometric Data
Entry and Disabling User Account.

Enhance TestConductor Test Suite

When a systems engineer changes, improves, or enhances the
system model, additional test cases are needed to perform a thorough
test of the model. These test cases may be added using the Rhapsody
sequence diagram editor. The test will then be part of the whole test
suite and can also be executed with TC, thus also contributing to the
complete pass/fail results as well as to the model requirements
coverage.

Fig.A6-9 Test / Requirements Coverage Overview (excerpt)

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 153

Appendix

A7 Rhapsody SE-Toolkit (Overview)

Rhapsody SE-Toolkit Features

 SE-Toolkit Feature Description

1.1 Add Hyperlink(s) Adds a hyperlink from the source(s) to the destination(s).

1.2 Add Anchor(s) Adds an anchor from the source(s) to the destination(s)

1.3 Add SD Ref(s)
Adds selected sequence diagram(s) as
Referenced Sequences to the use case.

1.4 Add Event Reception(s) Adds receptions of the chosen events to the target interface.

4.5 Add Value Typr
Maps the seleted value type to the selected unit.
Tags of the value type are populated from the unit.

1.6 Merge Blocks
Copies any operations, receptions, and attributes
from the source blocks to a single destination block.

1.7 Create Dependency Creates dependencies between model elements.

1.8 Populate Activity Diagram
For each reflexive message on the selected sequence(s)
an action is created on the selected activity diagram

1.9 Allocate Operations
from Swimlanes

Copies operations allocated to a swimlane in a
White-Box Activity Diagram into the relevant sub-system block.

1
Modeling
Toolbox

1.10 Create New Scenario
from Activity Diagram

Creates a sequence diagram from selected actions in an activity diagram.
If the source is a single action then the user will be asked to choose a path
each time a condition connector is encountered

Harmony for SE Deskbook | 154 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Appendix

 Rhapsody SE-Toolkit Features cont’d

 SE-Toolkit Feature Description

2 Create Harmony Project Creates a Harmony for Systems Engineering compliant project structure

3 Create System Model from Use Case
Creates a Harmony for Systems Engineering compliant package structure
for the use case model

4 Auto-Rename Actions Harmonizes the action statement and action name in an activity diagram.

5 Add Actor Pins
Adds SysML action pins stereotyped <<ActorPin>> to the selected action on an
activity diagram. User selects the direction and the actor from a drop down list.

6 Perform Activity View Consistency Check
Checks the consistency between actions of the black-box activity diagram
and the operations in the derived use case scenarios.

7 Create Ports and Interfaces
Creates behavioral ports and associated interfaces
based on scenarios captured in sequence diagrams

8 Connect Ports Creates links between ports on an internal block diagram

9 Create Initial Statechart
Creates wait state(s) and actition states based on
the information captured in an Activity Diagram .

10 Merge Functional Analysis
Copies all operations, event receptions and attributes
from all use case blocks into the selected block

11 Duplicate Activity View Makes a copy of an activity view and strips away any referenced scenarios

12 Create Sub Packages
Creates a package per subsystem and
moves subsystem blocks into those packages.

13 Architectural Design Wizard
Copies operations from one architectural layer to another and
tracks when operations have been allocated.

14 Perform Swimlane Consistency Check
Checks consistency between the allocated actions in swimlanes
against the allocated operations in subsystem blocks.

15 Create Allocation Table
Summarizes the allocation of operations of a white-box activity diagram
in an Excel spreadsheet.

16 Create Allocation CSV File
As ‘Create Allocation Table’ – except in a CSV form.
Added to the model as a controlled file.

17 Generate N2 Matrix
Creates an Excel spreadsheet of the
provided and required interface matrix from an internal block diagram

18 Copy MoEs to Children Copies the MoE attributes of the key function block into the solution blocks.

19 Copy MoEs from Base Copies the MoE attributes of the key function block into a selected solution block.

20 Perform Trade Analysis
Calculates for a set of solutions a Weighted Objectives Table and
displays the results in an Excel spreadsheet.

© Copyright IBM Corporation 2006, 2010. All Rights Reserved. Harmony for SE Deskbook | 155

Appendix

Harmony/SE Workflow and its
Support throughthe Rhapsody Toolkit

[Next System Use Case]
[else]

Define
System Use Case

Prioritize and Group
System Use Cases

[else]

[System Use Cases defined]

Link
Functional / Performance
Reqs to System Use Case

SE-Toolkit Feature:
#1.7

System
Requirements

[Next System Use Case]
[else]

Define
System Use Case

Define
System Use Case

Prioritize and Group
System Use Cases

Prioritize and Group
System Use Cases

[else]

[System Use Cases defined]

Link
Functional / Performance
Reqs to System Use Case

Link
Functional / Performance
Reqs to System Use Case

SE-Toolkit Feature:
#1.7

System
Requirements

Requirements Analysis

System Functional Analysis

Design Synthesis

Harmony for SE Deskbook | 156 © Copyright IBM Corporation 2006, 2010. All Rights Reserved.

Appendix

7 References

[1] OMG SysML Specification 1.3, June 2012,
http://www.sysml.org/specs

[2] Bruce Powel Douglass, “The Harmony Process: "The Development Spiral”.
 Telelogic Whitepaper 2006

[3] Bruce Powel Douglass, Mats Goethe,
“IBM Rational Workbench for Systems and Software Engineering”, IBM Redpaper, 2010
http://www.redbooks.ibm.com/redpapers/pdfs/redp4681.pdf

 [4] “Engineering Design Methods: Strategies for Product Design”
Nigel Cross, Wiley, 1989

 [5] BTC Embedded Systems AG,
Rhapsody TestConductor Tutorial for the Verification of Harmony/SE Hand-off Models”, Online video, 2014
http://pic.dhe.ibm.com/infocenter/rhaphlp/v8/index.jsp?topic=%2Fcom.btc.tcatg.user.doc%2Ftopics%2Fcom.btc.tcatg.user.doc.html

