Системная инженерия — различия между версиями

Строка 15: Строка 15:
 
# '''Алхинженерия'''
 
# '''Алхинженерия'''
 
# '''Классическая системная инженерия''' использует диаграммную технику — это уже не вольные поэтические метафоры, как в алхинженерии, но много более строгие определения системы: чертежи, диаграммы, таблицы и т.д. Но это не полностью формальное описание: его нельзя как-то формально проверить, оно предназначено для чтения и интерпретации только людьми.
 
# '''Классическая системная инженерия''' использует диаграммную технику — это уже не вольные поэтические метафоры, как в алхинженерии, но много более строгие определения системы: чертежи, диаграммы, таблицы и т.д. Но это не полностью формальное описание: его нельзя как-то формально проверить, оно предназначено для чтения и интерпретации только людьми.
# '''[[Моделеориентированная системная инженерия]]''' (model-based systems engineering) предусматривает использование логических (структурных) и физических (числовых) формальных моделей, которые могут непосредственно быть обработаны (проверены, оптимизированы) компьютером. Это позволяет достигать принципиально другой сложности целевых систем: компьютеры проверяют модели на отсутствие разного рода ошибок в разы более производительно и точно, чем это может сделать человек. Основной особенностью моделеориентированной системной инженерии является то, что используются не только численные физические модели, но и “логические” модели, использующие аппарат дискретной математики, плюс алгоритмические модели на языках программирования.
+
# '''[[MBSE|Системная инженерия на основе моделей]]''' (model-based systems engineering) предусматривает использование логических (структурных) и физических (числовых) формальных моделей, которые могут непосредственно быть обработаны (проверены, оптимизированы) компьютером. Это позволяет достигать принципиально другой сложности целевых систем: компьютеры проверяют модели на отсутствие разного рода ошибок в разы более производительно и точно, чем это может сделать человек. Основной особенностью MBSE является то, что используются не только численные физические модели, но и “логические” модели, использующие аппарат дискретной математики, плюс алгоритмические модели на языках программирования.
# '''Поискориентированная системная инженерия''' (search-based systems engineering). Сейчас существует только search-based software engineering (SBSE, термин появился в 2001 году). Если в моделеориентированной системной инженерии мы формализовали набором моделей сам объект работы инженеров - целевую систему и подвергали эти модели анализу солверов, то в поиск-ориентированной системной инженерии мы формализуем также и синтетические практики системной инженерии: инженерии требований, инженерии системной архитектуры и инженерии проверки и приёмки.
+
# '''Поискориентированная системная инженерия''' (search-based systems engineering). Сейчас существует только search-based software engineering (SBSE, термин появился в 2001 году). Если в [[MBSE]] мы формализовали набором моделей сам объект работы инженеров - целевую систему и подвергали эти модели анализу солверов, то в поиск-ориентированной системной инженерии мы формализуем также и синтетические практики системной инженерии: инженерии требований, инженерии системной архитектуры и инженерии проверки и приёмки.
  
 
Системная инженерия ничего не говорит про то (не предлагает никаких “методов творческого мышления”, таблиц решений, способов развития воображения), как снимать противоречия. Системная инженерия позволяет удерживать видение всей системы в целом при решении проблем, не терять за деревьями леса, не терять за листьями дерева. Системноинженерное мышление как минимум помогает поделить решение проблемы между разными людьми в инженерном коллективе. Для этого системные инженеры явно обсуждают метод своей работы. Так, они не просто “генерируют основные инженерные решения”, а “создают архитектуру системы” — профессиональный язык системных инженеров (он основан на системном подходе) позволяет быстрее договариваться о том, что делать и о чём думать, чем при использовании бытового языка. Более того, системная инженерия делает всё, чтобы не нужно было мыслить, а нужно было бы просто применять в проекте уже известные технические решения.
 
Системная инженерия ничего не говорит про то (не предлагает никаких “методов творческого мышления”, таблиц решений, способов развития воображения), как снимать противоречия. Системная инженерия позволяет удерживать видение всей системы в целом при решении проблем, не терять за деревьями леса, не терять за листьями дерева. Системноинженерное мышление как минимум помогает поделить решение проблемы между разными людьми в инженерном коллективе. Для этого системные инженеры явно обсуждают метод своей работы. Так, они не просто “генерируют основные инженерные решения”, а “создают архитектуру системы” — профессиональный язык системных инженеров (он основан на системном подходе) позволяет быстрее договариваться о том, что делать и о чём думать, чем при использовании бытового языка. Более того, системная инженерия делает всё, чтобы не нужно было мыслить, а нужно было бы просто применять в проекте уже известные технические решения.

Версия 16:52, 11 мая 2016

Системная инженерия — систематический, хорошо упорядоченный подход для технического описания, проектирования, разработки, реализации, технического руководства созданием, эксплуатации и прекращения использования системы.

Системная инженерия

  • помогает создателям систем в выделении точек зрения, которые следует использовать системному инженеру, когда он смотрит на мир,
  • определяет сферу деятельности (ответственности) системного инженера,
  • предлагает инструментарий (процессы) для осуществления этой деятельности.

СИ, сосредотачивая внимание на целостном и универсальном, а не на частном и специальном, может рассматриваться как связующее звено между искусством и наукой инженерной деятельности. В составе системной инженерии выделяют две составляющих:

  1. специальное руководство (Technical leadership), сконцентрированное на протяжении полного [[Жизненный цикл|ЖЦ системы] на продуктивных технических проектных решениях и технической целостности - искусство СИ, т.е. творческая деятельность, направленная на получение новых возможностей и систем на основе гармоничного сочетания технических знаний в определенных областях, инженерного инстинкта, умения решать задачи, креативности, способности к роли лидера и к обмену знаниями и мнениями.
  2. управление системными решениями (Systems management), сосредоточенное на решении проблем, использования множества различных технологий, участия в работе нескольких организаций, а также вовлечения сотен и тысяч людей в комплексную техническую деятельность - наука СИ, т.е. хорошо формализованная деятельность, направленная на выработку и систематизацию знаний, необходимых для строгого и эффективного управления развитием и функционированием сложных систем (эффективное управление предполагает использование систематизированного, упорядоченного, поддающегося количественному определению подхода, который может использоваться рекурсивно на разных системных уровнях, является воспроизводимым и пригодным для наблюдения и демонстрации).

см. Инженерия и наука

Поколения системной инженерии

  1. Алхинженерия
  2. Классическая системная инженерия использует диаграммную технику — это уже не вольные поэтические метафоры, как в алхинженерии, но много более строгие определения системы: чертежи, диаграммы, таблицы и т.д. Но это не полностью формальное описание: его нельзя как-то формально проверить, оно предназначено для чтения и интерпретации только людьми.
  3. Системная инженерия на основе моделей (model-based systems engineering) предусматривает использование логических (структурных) и физических (числовых) формальных моделей, которые могут непосредственно быть обработаны (проверены, оптимизированы) компьютером. Это позволяет достигать принципиально другой сложности целевых систем: компьютеры проверяют модели на отсутствие разного рода ошибок в разы более производительно и точно, чем это может сделать человек. Основной особенностью MBSE является то, что используются не только численные физические модели, но и “логические” модели, использующие аппарат дискретной математики, плюс алгоритмические модели на языках программирования.
  4. Поискориентированная системная инженерия (search-based systems engineering). Сейчас существует только search-based software engineering (SBSE, термин появился в 2001 году). Если в MBSE мы формализовали набором моделей сам объект работы инженеров - целевую систему и подвергали эти модели анализу солверов, то в поиск-ориентированной системной инженерии мы формализуем также и синтетические практики системной инженерии: инженерии требований, инженерии системной архитектуры и инженерии проверки и приёмки.

Системная инженерия ничего не говорит про то (не предлагает никаких “методов творческого мышления”, таблиц решений, способов развития воображения), как снимать противоречия. Системная инженерия позволяет удерживать видение всей системы в целом при решении проблем, не терять за деревьями леса, не терять за листьями дерева. Системноинженерное мышление как минимум помогает поделить решение проблемы между разными людьми в инженерном коллективе. Для этого системные инженеры явно обсуждают метод своей работы. Так, они не просто “генерируют основные инженерные решения”, а “создают архитектуру системы” — профессиональный язык системных инженеров (он основан на системном подходе) позволяет быстрее договариваться о том, что делать и о чём думать, чем при использовании бытового языка. Более того, системная инженерия делает всё, чтобы не нужно было мыслить, а нужно было бы просто применять в проекте уже известные технические решения.

Метод системной инженерии

Теоретическую и методологическую основу системной инженерии составляют:

  • Системный подход;
  • Общая теория систем;
  • методы исследований с привлечением математической логики, математической статистики, системного анализа, теории алгоритмов, теории игр, теории ситуаций, теории информации, комбинаторики и ряда других.

В системной инженерии тесно переплетены элементы науки и практики. Хотя её основой считают общесистемные теории, системная инженерия, однако, заимствует у них лишь самые общие исходные представления и предпосылки. Её методологический статус весьма необычен: с одной стороны, системная инженерия располагает методами и процедурами, почерпнутыми из современной науки и созданными специально для неё, что ставит её в ряд с другими прикладными направлениями современной методологии, с другой — в развитии системной инженерии отсутствует тенденция к оформлению его в строгую и законченную теорию. Это связано, прежде всего, с тем, что чрезвычайно высокая сложность и разнообразие крупномасштабных систем существенно затрудняет использование точных формализованных методов при их создании. Поэтому основные концепции, методы и технологии современной системной инженерии формировались, главным образом, в рамках практики успешных разработок. В настоящее время системная инженерия представляет собой междисциплинарный комплекс исследований, подходов и методологий к построению и эксплуатации сложных систем любого масштаба и назначения в различных областях человеческой деятельности (см.: Деятельность).

В основании метода СИ лежат:

  1. концепции СИ - общие абстрактные представления, связанные с пониманием предмета СИ, которые направляют мышление системного инженера.
  2. принципы СИ - исходные, принимаемые за истину правила, которые используются в качестве основы для рассуждений и/или для принятия решений, предоставляют необходимые правила и нормы

Д. Хитчинс пришёл к выводу, что принципы системной инженерии напрямую связаны с концепциями системы, инженерной деятельности и управления (Hitchins D. What are the General Principles Applicable to Systems? — INCOSE INSIGHT. — V. 12, Issue 4. — December 2009. — pp. 59–64). При выделении принципов системной инженерии он ориентировался на системные концепции, типичные для инженерно-технических и социотехнических систем.

Базовые принципы системной инженерии по Д. Хитчинсу:

  1. Системный подход (The Systems Approach) — целевая система рассматривается как открытая и в контексте её взаимодействия и приспособления к другим системам, находящимся в среде функционирования, как имеющая в своём составе открытые, взаимодействующие между собой подсистемы и как представляющая собой часть системы в более широком смысле или объемлющей системы.
  2. Синтез (Synthesis) — для получения решения части или подсистемы соединяются между собой, чтобы функционировать и взаимодействовать как единое целое, демонстрируя повышение эффективности работы в результате соединения, интеграции, слияния отдельных частей в единую систему (синергический эффект). При этом основная задача системной инженерии состоит в выборе (описании, проектировании, селекции) «правильных» составных частей, их соединении между собой так, чтобы достигалось необходимое взаимодействие и в правильном сочетании этих взаимодействий таким образом, чтобы достигались необходимые свойства целого.
  3. Холизм (Holism) — при принятии решений проблема, её решение и система рассматриваются в целом.
  4. Органицизм (Organicism) — свойства и поведение систем рассматриваются в динамике, причём в основе деятельности системного инженера лежат скорее представления о развитии биологического организма, нежели механистическая метафора классического инженерного подхода.

Дополнительные принципы системной инженерии по Д. Хитчинсу:

  1. Адаптивная оптимизация (Adaptive Optimizing) — проблемы следует решать постепенно во времени, то есть так, чтобы адаптировать характеристики сложной системы к новым ситуациям и изменениям, происходящим в состоянии системы, во внешней среде и в других системах, взаимодействующих с целевой, а также учесть возникающие дополнительные факторы. Наиболее важный аспект адаптивной оптимизации — обеспечение возможности непрерывного улучшения характеристик системы для сохранения оптимальной эффективности в условиях изменений в среде функционирования.
  2. Постепенное уменьшение энтропии (Progressive Entropy Reduction) — процесс системной инженерии продолжается на протяжении всего жизненного цикла системы, в результате чего энтропия, характеризующая целевую систему, постепенно уменьшается с переходом от состояния беспорядка (высокая энтропия) к состоянию порядка (низкая энтропия) в конце цикла.
  3. Разумная достаточность (Adaptive Satisfying) — успешная системная инженерия включает процесс непрерывной адаптации требований к системе и решений для получения результатов, которые в данных условиях позволяют в наибольшей степени удовлетворить критически важные заинтересованные стороны. Это включает две составляющих:
    1. система успешна тогда и только тогда, когда с её помощью добиваются успеха все ключевые заинтересованные стороны;
    2. для того, чтобы система позволяла ключевым заинтересованным сторонам добиться успеха требуется:
      • идентифицировать все критически важные заинтересованных сторон;
      • определить, в чём видят успех заинтересованные стороны;
      • договориться с заинтересованными сторонами о взаимовыгодном наборе планов создания и производства системы, а также реализации процессов;
      • контролировать, с учётом баланса интересов заинтересованных сторон, реализацию планов, включая адаптацию к происходящим изменениям.


Метод СИ является руководством и практическим инструментом для достижения цели, т.е. для создания успешной системы, а также для достижения состояния стабильного, устойчивого развития посредством принятия непротиворечивых решений на протяжении ЖЦ системы.

Процесс системной инженерии

Опыт множества системных разработок показывает, что несмотря на отличия в целевых системах, совокупность действий, повторяющихся по мере прохождения стадий и этапов жизненного цикла в своей основе остаётся постоянной. Поэтому на практике системная инженерия стремится формализовать процесс разработки систем. Совокупность подобных типовых, повторяющихся действий получила особое название — процессы системной инженерии (Systems Engineering Process) или методы системной инженерии (Systems Engineering Method).

Процесс системной инженерии (Systems Engineering Process) - cовокупность типовых действий, повторяющихся по мере прохождения стадий и этапов ЖЦ [Blanchard B., Fabrycky W. Systems Engineering and Analysis - Prentice Hall International Series in Industrial & Systems Engineering, 5th Edition, 2010] также называется подходом системной инженерии (Systems Engineering Approach) [Sadraey M. Aircraft Design: A Systems Engineering Approach - Wiley, 2012] и методом системной инженерии (Systems Engineering Method) [Kossiakoff A. et al. Systems Engineering Principles and Practice - Wiley, 2011]

В обобщённой форме набор методов (процессов) системной инженерии включает, как минимум, следующие действия, которые необходимы для получения оптимальной системы:

  • обеспечение надёжного проектного репозитория, который поддерживает необходимые инструменты для совместной работы множества специалистов над мультидисциплинарной информацией в ходе создания системы и управления её жизненным циклом;
  • точную оценку доступной информации и определение недостающей;
  • точное определение критериев производительности и эффективности, которые определяют успех или неудачу системного проекта;
  • получение и анализ всех исходных требований, которые отражают запросы пользователей и цели заинтересованных сторон (см. Инженерия требований);
  • проведение системного анализа для разработки проектных решений, отражающих поведение системы, которые должны соответствовать всем функциональным требованиям и требованиям к производительности;
  • распределение всех поведенческих элементов системы по соответствующим (подходящим) им элементам архитектуры;
  • проведение анализа компромиссных решений по альтернативным проектным решениям или архитектуре для поддержки процесса принятия решений;
  • создание исполняемых моделей для верификации и валидации работы системы.

Все известные методы (процессы) системной инженерии предполагают итеративное применение процедур синтеза, анализа, оценки:

  1. Синтез включает формирование определённой совокупности нужд и требований клиента и других заинтересованных сторон, описанных на языке функционирования. Основными элементами обеспечения синтеза являются команда разработчиков, а также традиционные и компьютерно-ориентированные инструменты синтеза. Синтез наиболее эффективен при одновременном использовании как восходящих, так и нисходящих действий, причём учитываются результаты прикладных исследований и возможности использования известных технологий. Существующие и вновь спроектированные, компоненты, узлы и подсистемы комплексируются в виде, пригодном для анализа и оценки.
  2. Анализ вариантов системных решений включает вычисление и предсказание значения параметров, зависящих от конструктивных решений (технических характеристик), а также определение или предсказание параметров, не зависящих от конструктивных решений. Во всех случаях используется информация о физических процессах и явлениях, техническая информация, а также экономическая информация, хранящаяся в базах данных. Системный анализ и исследование операций являются необходимыми шагами на пути оценки проектных вариантов системы, но требуется обязательная адаптация соответствующих моделей и методов к особенностям предметной области. В целом, применение анализа — это необходимая, но не достаточная составляющая процедуры принятия решения о выборе проектного варианта системы.
  3. Оценка подразумевает, что каждый вариант решения (или альтернатива) оценивается в сравнении с другими вариантами, а также проверяется на соответствие требованиям заинтересованных сторон. Оценка каждого из вариантов выполняется после получения сведений о его характеристиках, зависящих от конструктивных решений. Данные о характеристиках, не зависящих от конструктивных решений, являются внешними факторами, которые используются по отношению ко всем кандидатам, подвергаемым оценке. Каждый кандидат подвергается окончательной оценке с выбранными оптимальными характеристиками, после чего передаётся для принятия окончательного решения. Поскольку выбор всегда субъективен решение, в конечном счёте, принимается ключевыми заинтересованными сторонами.

Espiral3.gif

Итеративное использование триады «синтез — анализ — оценка» — принципиально важная особенность методов (процессов) системной инженерии. Применение метода начинается с осознания потребностей заинтересованных сторон и определения их требований, которые далее преобразуются по определённым правилам для получения исходного описания системных решений. В дальнейшем описание системы уточняется и детализируется, причём на более низких уровнях системной иерархии процесс системной инженерии используется уже рекурсивно, что позволяет добиться высокого уровня конкретизации при описании системы. Использование метода «синтез — анализ — оценка» позволяет описывать и строить систему, обеспечивая и постепенный обратный переход от уровня детального описания составных частей к более крупным элементам и узлам.

Предмет системной инженерии

В соответствии с современными представлениями, предметом системной инженерии является интегрированное, целостное рассмотрение крупномасштабных, комплексных, высокотехнологичных систем, взаимодействующих преимущественно на уровне предприятий с использованием человеко-машинных интерфейсов. Создание таких систем требует усиленного внимания к следующим процедурам:

  • разработке архитектуры систем, проектированию систем и их элементов;
  • системному анализу и исследованию операций;
  • управлению инженерной деятельностью;
  • выбору технологий и методик;
  • эффективному управлению жизненным циклом системы.

Профиль современной системной инженерии включает следующие основные области деятельности:

  1. Управление организацией (организационно-управленческая деятельность).
  2. Управление проектами (проектно-управленческая деятельность).
  3. Управление инженерными решениями (проектно-инженерная деятельность).
  4. Специальные инженерные дисциплины (технологическая деятельность).

Стандарты в области системной инженерии

См. также Категория: Стандарты

Официальные стандарты

Признанные международным индустриальным сообществом стандарты и нормативные руководства по системной инженерии разрабатываются, в основном, тремя организациями:

  • Седьмой подкомитет Объединённого технического комитета Международной организации стандартизации (International Standard Organization; ISO) и Международной электротехнической комиссии (International Electrotechnical Commission; IEC) «Системная и программная инженерия» (ISO/IEC JTC1/SC7 Software and Systems Engineering).
  • Институт инженеров электротехники и электроники (Institute of Electrical and Electronics Engineers; IEEE).
  • Международный совет по системной инженерии (International Council on Systems Engineering; INCOSE).

Кроме того, существенный вклад в разработку нормативной базы системной инженерии внесли:

  • Альянс отраслей электронной промышленности (Electronics Industries Alliance; ЕIA),
  • Институт программной инженерии Университета Карнеги-Меллон (Software Engineering Institute Carnegie Mellon University; SEI CMU),
  • Международная ассоциация по управлению проектами (International Project Management Association; IPMA),
  • ряд других, имеющих международное признание организаций.

Активную работу по построению связанного семейства стандартов, необходимых для создания производственных систем и их интеграции как внутри, так и между предприятиями, включая управление цепочками поставок и электронный бизнес, ведёт

  • Технический комитет 184 «Системы промышленной автоматизации и интеграция» (ISO/TC 184 Industrial Automation Systems and Integration).

Фактические стандарты

Важная особенность официальных стандартов системной инженерии состоит в том, что системно-инженерные спецификации не являются стандартами прямого действия. Они содержат преимущественно рекомендации и положения относительно того, что следует делать, оставляя решение о том, как это следует делать, на усмотрение сторон, создающих систему и управляющих проектом. Поэтому многие спецификации носят явно выраженный рамочный характер, то есть предполагается, что содержащиеся в этих стандартах рекомендации должны обязательно адаптироваться к условиям конкретной системно-инженерной деятельности. Такой подход предполагает, что в той или иной отрасли или в крупной организации с учётом рекомендаций официальных стандартов могут быть разработаны свои нормативные документы, регулирующие системно-инженерную деятельность.

Подобные рекомендации разрабатываются профессиональными сообществами, государственными организациями, осуществляющими закупки систем в интересах правительства, а также крупными корпорациями, занятыми созданием сложных систем. Например:

  • Руководстве к своду знаний в области системной инженерии (Guide to the Systems Engineering Body of Knowledge; SEBoK). Это руководство в течение последних лет разрабатывается ведущими мировыми экспертами по системной инженерии в рамках международного проекта «Свод знаний и учебный план для современной системной инженерии» (Body of Knowledge and Curriculum to Advance Systems Engineering; BKCASE).
  • Руководство федерального управления гражданской авиации США (U. S. Department of Transportation. Federal Aviation Administration. Requirements Engineering Management Handbook),
  • Руководство военно-морского ведомства США (Naval «Systems of Systems» Systems Engineering Guidebook),
  • Руководство Национального космического агентства США (NASA Systems Engineering Handbook).

Фактические стандарты не имеют официального статуса и могут быть представлены в произвольной форме, однако высокая заинтересованность разработчиков этих стандартов в их широком практическом применении, направленность на решение конкретных технических задач при создании и реализации продукции и услуг, высокая скорость разработки и возможность использования фактического стандарта ещё до того, как он будет утверждён и принят, делают спецификации этого типа весьма востребованными на рынке системно-инженерных разработок.